
EH Forwarder Bot Documentation
Release 2.1.1

Eana Hufwe, and the EH Forwarder Bot contributors

Feb 13, 2022

Contents

1 Getting started 3

2 Configuration File 7

3 Launch the framework 9

4 Directories 11

5 Profiles 13

6 Support 15

7 Walk-through — How EFB works 17

8 Development guide 21

9 How to contribute 33

10 API documentations 37

11 Indices and tables 73

12 Feel like contributing? 75

13 Related articles 77

14 License 79

Python Module Index 81

Index 83

i

ii

EH Forwarder Bot Documentation, Release 2.1.1

Codename EH Forwarder Bot (EFB) is an extensible message tunneling chat bot framework which delivers messages to
and from multiple platforms and remotely control your accounts.

Contents 1

EH Forwarder Bot Documentation, Release 2.1.1

2 Contents

CHAPTER1

Getting started

A few simple steps to get started with EFB.

1.1 Install EH Forwarder Bot

EH Forwarder Bot can be installed in the following ways:

1.1.1 Install from PyPI

pip will by default install the latest stable version from PyPI, but development versions are available at PyPI as well.

pip3 install ehforwarderbot

1.1.2 Install from GitHub

This will install the latest commit from GitHub. It might not be stable, so proceed with caution.

pip3 install git+https://github.com/ehForwarderBot/ehforwarderbot.git

3

EH Forwarder Bot Documentation, Release 2.1.1

1.1.3 Alternative installation methods

You can find a list of alternative installation methods contributed by the community in the project wiki.
For scripts, containers (e.g. Docker), etc. that may include one or more external modules, please visit the modules
repository.

Note: These alternative installation methods are maintained by the community, please consult their respective author or
maintainer for help related to those methods.

1.2 A stable internet connection

Since the majority of our channels are using polling for message retrieval, a stable internet connection is necessary for
channels to run smoothly. An unstable connection may lead to slow response, or loss of messages.

1.3 Create local directories

EFB uses a *nix user configuration style, which is described in details in Directories. In short, if you are using the default
configuration, you need to create ~/.ehforwarderbot, and give read and write permission to the user running EFB.

1.4 Choose, install and enable modules

Currently, all modules that was submitted to us are recorded in the modules repository. You can choose the channels that
fits your need the best.
Instructions about installing each channel is available at their respective documentations.

1.4.1 Set up with the configuration wizard

When you have successfully installed the modules of your choices, you can the use the configuration wizard which guides
you to enable channels and middlewares, and continue to setup those modules if they also have provided a similar wizard.
You can start the wizard by running the following command in a compatible console or terminal emulator:

efb-wizard

If you want to start the wizard of a module for a profile individually, run:

efb-wizard -p <profile name> -m <module ID>

4 Chapter 1. Getting started

https://efb.1a23.studio/wiki/Alternative-installation-methods
https://efb-modules.1a23.studio
https://efb-modules.1a23.studio
https://efb-modules.1a23.studio

EH Forwarder Bot Documentation, Release 2.1.1

1.4.2 Set up manually

Alternatively, you can enable those modules manually it by listing its Channel ID in the configuration file. The default
path is ~/.ehforwarderbot/profiles/default/config.yaml. Please refer to Directories if you have
configured otherwise.
Please note that although you can have more than one slaves channels running at the same time, you can only have exactly
one master channels running in one profile. Meanwhile, middlewares are completely optional.
For example, to enable the following modules:

• Master channel
– Demo Master (foo.demo_master)

• Slave channels
– Demo Slave (foo.demo_slave)
– Dummy Slave (bar.dummy)

• Middlewares
– Null Middleware (foo.null)

config.yaml should have the following lines:

master_channel: foo.demo_master
slave_channels:
- foo.demo_slave
- bar.dummy
middlewares:
- foo.null

If you have enabled modules manually, you might also need configure each module manually too. Please consult the
documentation of each module for instructions.

1.5 Launch EFB

ehforwarderbot

This will launch EFB directly in the current environment. The default Profiles is named default, to launch EFB in a
different profile, append --profile <profile-name> to the command.
For more command line options, use --help option.

1.5.1 Use EFB in another language

EFB supports translated user interface and prompts. You can set your system language or locale environmental variables
(LANGUAGE, LC_ALL, LC_MESSAGES or LANG) to one of our supported languages to switch language.
You can help to translate this project into your languages on our Crowdin page.

Note: If your are installing from source code, you will not get translations of the user interface without manual compile
of message catalogs (.mo) prior to installation.

1.5. Launch EFB 5

https://crowdin.com/project/ehforwarderbot/
https://crowdin.com/project/ehforwarderbot/

EH Forwarder Bot Documentation, Release 2.1.1

1.5.2 Launch EFB as a daemon process

Since version 2, EH Forwarder Bot has removed the daemon helper as it is unstable to use. We recommend you to use
mature solutions for daemon management, such as systemd, upstart, or pm2.

6 Chapter 1. Getting started

https://www.freedesktop.org/wiki/Software/systemd/
http://upstart.ubuntu.com/
http://pm2.keymetrics.io/

CHAPTER2

Configuration File

EFB has an overall configuration file to manage all enabled modules. It is located under the directory of current profile,
and named config.yaml.

2.1 Syntax

The configuration file is in the YAML syntax. If you are not familiar with its syntax, please check its documentations and
tutorials for details.

• The ID of the master channel enabled is under the key master_channel
• The ID of slave channels enabled is listed under the key slave_channels. It has to be a list even if just one
channel is to be enabled.

• The ID of middlewares enabled are listed under the key middlewares. It has to be a list even if just one
middleware is to be enabled. However, if you don’t want to enable anymiddleware, just omit the section completely.

2.2 Instance ID

To have multiple accounts running simultaneously, you can appoint an instance ID to a module. Instance ID can be defined
by the user, and if defined, it must has nothing other than letters, numbers and underscores, i.e. in regular expressions
[a-zA-Z0-9_]+. When instance ID is not defined, the channel will run in the “default” instance with no instance ID.
To indicate the instance ID of an instance, append # following by the instance ID to the module ID. For example, slave
channel bar.dummy running with instance ID alice should be written as bar.dummy#alice. If the channel
requires configurations, it should be done in the directory with the same name (e.g. EFB_DATA_PATH/profiles/
PROFILE/bar.dummy#alice), so as to isolate instances.
Please avoid having two modules with the same set of module ID and instance ID as it may leads to unexpected results.
For example, to enable the following modules:

• Master channel

7

EH Forwarder Bot Documentation, Release 2.1.1

– Demo Master (foo.demo_master)
• Slave channels

– Demo Slave (foo.demo_slave)
– Dummy Slave (bar.dummy)
– Dummy Slave (bar.dummy) at alt instance

• Middlewares
– Message Archiver (foo.msg_archiver)
– Null Middleware (foo.null)

config.yaml should have the following lines:

master_channel: foo.demo_master
slave_channels:
- foo.demo_slave
- bar.dummy
- bar.dummy#alt
middlewares:
- foo.msg_archiver
- foo.null

2.3 Granulated logging control

If you have special needs on processing and controlling the log produced by the framework and running modules, you can
use specify the log configuration with Python’s configuration dictionary schema under section logging.
An example of logging control settings:

logging:
version: 1
disable_existing_loggers: false
formatters:

standard:
format: '%(asctime)s [%(levelname)s] %(name)s: %(message)s'

handlers:
default:

level: INFO
formatter: standard
class: logging.StreamHandler
stream: ext://sys.stdout

loggers:
'':

handlers: [default,]
level: INFO
propagate: true

AliceIRCChannel:
handlers: [default,]
level: WARN
propagate: false

8 Chapter 2. Configuration File

https://docs.python.org/3.7/library/logging.config.html#logging-config-dictschema

CHAPTER3

Launch the framework

EH Forwarder Bot offered 2 ways to launch the framework:
• ehforwarderbot

• python3 -m ehforwarderbot

Both commands are exactly the same thing, accept the same flags, run the same code. The latter is only a backup in case
the former does not work.

3.1 Options

• -h, --help: Show help message
• -p PROFILE, --profile PROFILE: Switch profile

From version 2, EFB supports running different instances under the same user, identified by their pro-
files. The default profile is named default.

• -V, --version: Print version information
This shows version number of Python you are using, the EFB framework, and all channels and middle-
wares enabled.

• -v, --verbose: Print verbose log
This option enables verbose log of EFB and all enabled modules. This, together with --version, is
particularly useful in debugging and issue reporting.

• --trace-threads: Trace hanging threads
This option is useful to identify source of the issue when you encounter situations where you had to
force quit EFB. When this option is enabled, once the first stop signal (SIGINT or SIGTERM) is sent,
threads that are asleep will be identified and reported every 10 seconds, until a second stop signal is
seen.
In order to use this option, you need to install extra Python dependencies using the following command.

9

EH Forwarder Bot Documentation, Release 2.1.1

pip3 install 'ehforwarderbot[trace]'

3.2 Quitting EFB

If you started EFB in a shell, you can simply press Control-c to trigger the quit process. Otherwise, ask your service
manager to issue a SIGTERM for a graceful exit. The exit process may take a few second to complete.

Important: It is important for you to issue a graceful termination signal (e.g. SIGTERM), and NOT to use SIGKILL.
Otherwise you may face the risk of losing data and breaking programs.

If you have encountered any issue quitting EFB, press Control-c for 5 times consecutively to trigger a force quit. In
case you have frequently encountered situations where you had to force quit EFB, there might be a bug with EFB or any
modules enabled. You may want to use the --trace-threads option described above to identify the source of issue,
and report this to relevant developers.

10 Chapter 3. Launch the framework

CHAPTER4

Directories

Since EH Forwarder Bot 2.0, most modules should be installed with the Python Package Manager pip, while configura-
tions and data are stored in the “EFB data directory”.
By default, the data directory is user specific, located in the user’s home directory, ~/.ehforwarderbot. This can
be overridden with the environment variable EFB_DATA_PATH. This path defined here should be an absolute path.

4.1 Directory structure

Using the default configuration as an example, this section will introduce about the structure of EFB data directory.

./ehforwarderbot or $EFB_DATA_PATH
|- profiles
| |- default The default profile.
| | |- config.yaml Main configuration file.
| | |- dummy_ch_master Directory for data of the channel
| | | |- config.yaml Config file of the channel. (example)
| | | |- ...
| | |- random_ch_slave
| | | |- ...
| |- profile2 Alternative profile
| | |- config.yaml
| | |- ...
| |- ...
|- modules Place for source code of your own channels/middlewares
| |- random_ch_mod_slave Channels here have a higher priority while importing
| | |- __init__.py
| | |- ...

11

EH Forwarder Bot Documentation, Release 2.1.1

12 Chapter 4. Directories

CHAPTER5

Profiles

Starting from EFB version 2, profiles are introduced to allow users in need to run multiple EFB instances simultaneously
without affecting each other.
Each profile has its own set of configuration files a set of channels that share the same code, but has different data files,
so that they can run on their own.
The default profile name is called default. To switch to a different profile, specify the profile name in --profile
flag while starting EFB.

5.1 Start a new profile

To create a new profile, you need to create a directory in the EFB_DATA_PATH/profiles, and create a new config-
uration file as described in chapter Getting started.
When everything is configured properly, you are good to go.

13

EH Forwarder Bot Documentation, Release 2.1.1

14 Chapter 5. Profiles

CHAPTER6

Support

6.1 Bug reports and feature requests

See contribution guideline for details.

6.2 Questions about development and usage

If you have any question about developing a module for EFB, or about usages, you can always visit our GitHub Discussions
forum or join our Telegram Group for help.

15

https://github.com/ehForwarderBot/ehForwarderBot/discussions
https://telegram.me/efbsupport

EH Forwarder Bot Documentation, Release 2.1.1

16 Chapter 6. Support

CHAPTER7

Walk-through — How EFB works

EH Forwarder Bot is an extensible framework that allows user to control and manage accounts from different chat plat-
forms in a unified interface. It consists of 4 parts: a Master Channel, some Slave Channels, some Middlewares and a
Coordinator.

17

EH Forwarder Bot Documentation, Release 2.1.1

master channel The channel that directly interact with the User. It is guaranteed to have one and only one master channel
in an EFB session.

slave channel The channel that delivers messages to and from their relative platform. There is at lease one slave channel
in an EFB session.

coordinator Component of the framework that maintains the instances of channels, and delivers messages between
channels.

middleware Module that processes messages and statuses delivered between channels, and make modifications where
needed.

18 Chapter 7. Walk-through — How EFB works

EH Forwarder Bot Documentation, Release 2.1.1

7.1 Concepts to know

module A common term that refers to both channels and middlewares.
the User
the User Themself This term1 can refer to the user of the current instance of EH Forwarder Bot, operating the master

channel, and the account of an IM platform logged in by a slave channel.
chat A place where conversations happen, it can be either a private chat, a group chat, or a system chat.
private chat A conversation with a single person on the IM platform. Messages from a private conversation shall only

has an author of the User Themself, the other person, or a “system member”.
For platforms that support bot or something similar, they would also be considered as a “user”, unless messages in
such chat can be sent from any user other than the bot.
For chats that the User receive messages, but cannot send message to, it should also be considered as a private chat,
only to raise an exception when messages was trying to send to the chat.

group chat A chat that involves more than two members. A group chat MUST provide a list of members that is involved
in the conversation.

system chat A chat that is a part of the system. Usually used for chats that are either a part of the IM platform, the slave
channel, or a middleware. Slave channels can use this chat type to send system message and notifications to the
master channel.

chat member A participant of a chat. It can be the User Themself, another person or bot in the chat, or a virtual one
created by the IM platform, the slave channel, or a middleware.

message Messages are delivered strictly between the master channel and a slave channel. It usually carries an information
of a certain type.
Each message should at least have a unique ID that is distinct within the slave channel related to it. Any edited
message should be able to be identified with the same unique ID.

status Information that is not formatted into a message. Usually includes updates of chats and members of chats, and
removal of messages.

7.2 Slave Channels

The job of slave channels is relatively simple.
1. Deliver messages to and from the master channel.
2. Maintains a list of all available chats, and group members.
3. Monitors changes of chats and notify the master channel.

Features that does not fit into the standard EFB Slave Channel model can be offered as Additional features.
1 “Themself” here is used as a derived form of a gender-neutral singular third-person pronoun.

7.1. Concepts to know 19

EH Forwarder Bot Documentation, Release 2.1.1

7.3 Master Channels

Master channels is relatively more complicated and also more flexible. As it directly faces the User, its user interface
should be user-friendly, or at least friendly to the targeted users.
The job of the master channel includes:

1. Receive, process and display messages from slave channels.
2. Display a full list of chats from all slave channels.
3. Offer an interface for the User to use “extra functions” from slave channels.
4. Process updates from slave channels.
5. Provide a user-friendly interface as far as possible.

7.4 Middlewares

Middlewares can monitor and make changes to or nullify messages and statuses delivered between channels. Middlewares
are executed in order of registration, one after another. A middleware will always receive the messages processed by the
preceding middleware if available. Once a middleware nullify a message or status, the message will not be processed and
delivered any further.

20 Chapter 7. Walk-through — How EFB works

CHAPTER8

Development guide

This section includes guides on how to develop channels and middlewares for EH Forwarder Bot.
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted
as described in BCP 14 [RFC 2119] [RFC 8174] when, and only when, they appear in all capitals, as shown here.

8.1 Slave channels

Slave channel is more like a wrap over an API of IM, it encloses messages from the IM into appropriate objects and deliver
it to the master channel.
Although we suggest that slave channel should match with an IM platform, but you may try to model it for anything that
can deliver information as messages, and has a limited list of end-points to deliver messages to and from as chats.
In most of the cases, slave channels SHOULD be identified as one single user from the IM platform, instead of a bot.
You should only use a bot for slave channels when:

• the IM platform puts no difference between a user and a bot, or
• bots on the IM platform can do exactly same things, if not more, as a user, and bots can be created easier than user
account.

8.1.1 Additional features

Slave channels can offer more functions than what EFB requires, such as creating groups, search for friends, etc, via
additional features.
Such features are accessed by the user in a CLI-like style. An “additional feature” method MUST only take one string
parameter aside from self, and wrap it with extra() decorator. The extra decorator takes 2 arguments: name –
a short name of the feature, and desc – a description of the feature with its usage.

21

https://tools.ietf.org/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119.html
https://datatracker.ietf.org/doc/html/rfc8174.html

EH Forwarder Bot Documentation, Release 2.1.1

desc SHOULD describe what the feature does and how to use it. It’s more like the help text for an CLI program. Since
method of invoking the feature depends on the implementation of the master channel, you SHOULD use "{func-
tion_name}" as its name in desc, and master channel will replace it with respective name depend on their imple-
mentation.
The method MUST in the end return a string, which will be shown to the user as its result, or None to notify the master
channel there will be further interaction happen. Depending on the functionality of the feature, it may be just a simple
success message, or a long chunk of results.
The callable MUST NOT raise any exception to its caller. Any exceptions occurred within should be expected and
processed.
Callable name of such methods has a more strict standard than a normal Python 3 identifier name, for compatibility
reason. An additional feature callable name MUST:

• be case sensitive
• include only upper and lower-case letters, digits, and underscore.
• does not start with a digit.
• be in a length between 1 and 20 inclusive
• be as short and concise as possible, but keep understandable

It can be expressed in a regular expression as:

^[A-Za-z][A-Za-z0-9_]{0,19}$

An example is as follows:

@extra(name="Echo",
desc="Return back the same string from input.\n"

"Usage:\n"
" {function_name} text")

def echo(self, arguments: str = "") -> str:
return arguments

8.1.2 Message commands

Message commands are usually sent by slave channels so that users can respond to certain messages that has specific
required actions.
Possible cases when message commands could be useful:

• Add as friends when a contact card is received.
• Accept or decline when a friend request is received.
• Vote to a voting message.

A message can be attached with a list of commands, in which each of them has:
• a human-friendly name,
• a callable name,
• a list of positional arguments (*args), and
• a dict of keyword arguments (**kwargs)

22 Chapter 8. Development guide

EH Forwarder Bot Documentation, Release 2.1.1

When the User clicked the button, the corresponding method of your channel will be called with provided arguments.
Note that all such methods MUST return a str as a respond to the action from user, and they MUST NOT raise any
exception to its caller. Any exceptions occurred within MUST be expected and processed.

8.1.3 Message delivery

Slave channels SHOULD deliver all messages that the IM provides, including what the User sent outside of this channel.
But it SHOULD NOT deliver message sent from the master channel again back to the master channel as a new message.

8.1.4 Implementation details

See SlaveChannel.

8.2 Master channels

Master channels are the interface that directly or indirectly interact with the user. Despite the first master channel of EFB
(EFB Telegram Master) is written in a form of Telegram Bot, master channels can be written in many forms, such as:

• A web app
• A server that expose APIs to dedicated desktop and mobile clients
• A chat bot on an existing IM
• A server that compiles with a generic IM Protocol
• A CLI client
• Anything else you can think of…

8.2.1 Design guideline

When the master channel is implemented on an existing protocol or platform, as far as possible, while considering the
user experience, a master channel SHOULD:

• maintain one conversation thread per chat, indicating its name, source channel and type;
• support all, if not most, types of messages defined in the framework, process and deliver messages between the
user and slave channels;

• support all, if not most, features of messages, including: targeted message reply, chat substitution in text (usually
used in @ references), commands, etc. Master channel SHOULD be able to process incoming messages with such
features, and send messages with such features to slave channels if applicable;

• be able to invoke and process “additional features” offered by slave channels.
Optionally, a master channel can also support / identify vendor-specified information from certain slave channels.
Depends on your implementation, a master channel may probably needs to maintain a list of chats and messages, for
presentation or other purposes.

8.2. Master channels 23

EH Forwarder Bot Documentation, Release 2.1.1

Figure1: An example of an ideal design of a master channel, inspired by Telegram Desktop

8.2.2 Message delivery

Note that sometimes the User may send messages outside of this EFB session, so that slave channels MAY provide a
message with its author in the “self” type.

8.2.3 Implementation details

See MasterChannel.

8.3 Middlewares

Middlewares works in between the master channel and slave channels, they look through messages and statuses delivered
between channels, passing them on, make changes or discarding them, one after another.
Like channels, middlewares will also each have an instance per EFB session, managed by the coordinator. However, they
don’t have centrally polling threads, which means if a middleware wants to have a polling thread or something similar
running in the background, it has to stop the thread using Python’s atexit or otherwise.

8.3.1 Message and Status Processing

Each middleware by default has 2 methods, process_message() which processes message objects, and pro-
cess_status() which processes status objects. If they are not overridden, they will not touch on the object and
pass it on as is.
To modify an object, just override the relative method and make changes to it. To discard an object, simply return None.
When an object is discarded, it will not be passed further to other middlewares or channels, which means a middleware
or a channel will never receive a None message or status.

24 Chapter 8. Development guide

EH Forwarder Bot Documentation, Release 2.1.1

8.3.2 Other Usages

Having rather few limitation compare to channels, middlewares are rather easy to write, which allows it to do more than
just intercept messages and statuses.
Some ideas:

• Periodic broadcast to master / slave channels
• Integration with chat bots
• Automated operations on vendor-specific commands / additional features
• Share user session from slave channel with other programs
• etc…

8.3.3 Implementation details

See Middleware.

8.4 Lifecycle

This section talks about the lifecycle of an EFB instance, and that of a message / status.

8.4.1 Lifecycle of an EFB instance

The diagram below outlines the lifecycle of an EFB instance, and how channels and middlewares are involved in it.

8.4.2 Lifecycle of a message

The diagram below outlines the lifecycle of a message sending from a channel, going through all middlewares, sent to the
destination channel, and returned back to the sending channel.
Status objects processed in the same way.

8.5 Media processing

8.5.1 Choosing media formats

Both Master and Slave channel can take their charges to convert media files they send or receive. In general: if a media
file received from remote server is not a common format, convert it before deliver it on; if a media file sent to
remote server requires to be in a specific format, it should be converted before sending out. Nevertheless, this is
only a guideline on channels’ responsibility regarding media processing, and everyone has their own opinion on what is a
common format / encoding. Therefore we only recommend this behaviour, but do not force in our code. This is to say
that, you still have to take care of the accepted type of media encoding of your corresponding method of presentation,
and convert and/or fallback to different type of representation if necessary. After all, the delivery of information is more
important.

8.4. Lifecycle 25

EH Forwarder Bot Documentation, Release 2.1.1

Figure2: Lifecycle of an EFB instance
26 Chapter 8. Development guide

EH Forwarder Bot Documentation, Release 2.1.1

Figure3: Lifecycle of a message

8.5. Media processing 27

EH Forwarder Bot Documentation, Release 2.1.1

8.5.2 Media encoders

Similarly, we will also not put a strict limit on this as well, but just a recommendation. As you might have already know,
there are few mature pure Python media processing libraries, most of them will more or less requires internal or external
binary dependencies.
We try to aim to use as few different libraries as we can, as more library to install means more space, install time, and
complexity. While processing media files, we recommend to use the following libraries if possible:

• Pillow
• FFmpeg

8.5.3 Files in messages

When a file sent out from a channel, it MUST be open, and sought back to 0 (file.seek(0)) before sending.
Files sent MUST be able to be located somewhere in the file system, and SHOULD with a appropriate extension name,
but not required. All files MUST also have its MIME type specified in the message object. If the channel is not sure about
the correct MIME type, it can try to guess with libmagic, or fallback to application/octet-stream. Always
try the best to provide the most suitable MIME type when sending.
For such files, we use close to signify the end of its lifecycle. If the file is not required by the sender’s channel anymore,
it can be safely discarded.
Generally, tempfile.NamedTemporaryFile should work for ordinary cases.

8.6 Configurations and storage

8.6.1 Configurations and Permanent Storage

As described in Directories, each module has been allocated with a folder per profile for configurations and other storage.
The path can be obtained using get_data_path() with your module ID. All such storage is specific to only one
profile.
For configurations, we recommend to use <module_data_path>/config.yaml. Similarly, we prepared
get_config_path() to get the path for default config file. Again, you are not forced to use this name or YAML as
the format of your config file.
Usually in the storage folder lives:

• Configuration files
• User credentials / Session storage
• Databases

28 Chapter 8. Development guide

https://pillow.readthedocs.io/en/stable/
shttps://www.ffmpeg.org/

EH Forwarder Bot Documentation, Release 2.1.1

8.6.2 Temporary Storage

While processing multimedia messages, we inevitably need to store certain files temporarily, either within the channel or
across channels. Usually, temporary files can be handled with Python’s tempfile library.

8.6.3 Wizard

If your module requires relatively complicated configuration, it would be helpful to provide users with a wizard to check
prerequisites of your module and guide them to setup your module for use.
From version 2, EFB introduced a centralised wizard program to allow users to enable or disable modules in a text-based
user interface (TUI). If you want to include your wizard program as a part of the wizard, you can include a new entry
point in your setup.py with Setuptools’ Entry Point feature.
The group for wizard program is ehforwarderbot.wizard, and the entry point function MUST accept 2 positional
arguments: profile ID and instance ID.

Example

setup.py script

setup(
...
entry_points={

"ehforwarderbot.wizard": ['alice.irc = efb_irc_slave.wizard:main']
},
...

)

.egg-info/entry_points.txt

[ehforwarderbot.wizard]
alice.irc = efb_irc_slave.wizard:main

efb_irc_slave/wizard.py

...

def main(profile, instance):
print("Welcome to the setup wizard of my channel.")
print("You are setting up this channel in profile "

"'{0}' and instance '{1}'.".format(profile, instance))
print("Press ENTER/RETURN to continue.")
input()

step1()

...

8.6. Configurations and storage 29

https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

EH Forwarder Bot Documentation, Release 2.1.1

8.7 Packaging and Publish

8.7.1 Publish your module on PyPI

Publish modules on PyPI is one of the easiest way for users to install your package. Please refer to related documentation
and tutorials about PyPI and pip for publishing packages.
For EFB modules, the package is RECOMMENDED to have a name starts with efb-, or in the format of
efb-platform-type, e.g. efb-irc-slave or efb-wechat-mp-filter-middleware. If there is a col-
lision of name, you MAY adjust the package name accordingly while keeping the package name starting with efb-.
When you are ready, you may also want to add your module to the Modules Repository of EFB.

8.7.2 Module discovery

EH Forwarder Bot uses Setuptools’ Entry Point feature to discover and manage channels and middlewares. In your
setup.py script or .egg-info/entry_points.txt, specify the group and object as follows:

• Group for master channels: ehforwarderbot.master
• Group for slave channels: ehforwarderbot.slave
• Group for middlewares: ehforwarderbot.middleware

Convention for object names is <author>.<platform>, e.g. alice.irc. This MUST also be your module’s ID.
Object reference MUST point to your module’s class, which is a subclass of either Channel or Middleware.

8.7.3 Example

setup.py script

setup(
...
entry_points={

"ehforwarderbot.slave": ['alice.irc = efb_irc_slave:IRCChannel']
},
...

)

.egg-info/entry_points.txt

[ehforwarderbot.slave]
alice.irc = efb_irc_slave:IRCChannel

30 Chapter 8. Development guide

https://efb-modules.1a23.studio
https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins

EH Forwarder Bot Documentation, Release 2.1.1

8.7.4 Private modules

If you want to extend from, or make changes on existing modules for your own use, you can have your modules in the
private modules directory.
For such modules, your channel ID MUST be the fully-qualified name of the class. For example, if your class is located
at <EFB_BASE_PATH>/modules/bob_irc_mod/__init__.py:IRCChannel, the channel MUST have ID
bob_ric_mod.IRCChannel for the framework to recognise it.

8.8 Miscellaneous

8.8.1 Logging

In complex modules, you should have detailed logs in DEBUG level and optionally INFO level. All your log handlers
SHOULD follow that of the root logger, which is controlled by the framework. This could be helpful when for you to
locate issues reported by users.

8.8.2 Vendor-specifics

If you are going to include vendor specific information in messages and/or chats, please make your effort to document
them in your README or documentation, so that other developers can refer to it when adapting your module.

8.8.3 Threading

All channels are RECOMMENDED a separate thread while processing a new message, so as to prevent unexpectedly
long thread blocking.
We are also considering to move completely to asynchronous programming when most channels are ready for the change.

8.8.4 Static type checking

EH Forwarder Bot is fully labeled in the Python 3 type hint notations. Since sometimes maintaining a module with high
complexity could be difficult, we RECOMMEND you to type your module too and use tools like mypy to check your
code statically.

8.8. Miscellaneous 31

https://github.com/python/mypy

EH Forwarder Bot Documentation, Release 2.1.1

32 Chapter 8. Development guide

CHAPTER9

How to contribute

First of all, thanks for taking your time to contribute!
Please note that only questions on the framework will be answered here. For issue related with any channels, please
contact their respective authors or post in their corresponding repositories.
Here is a simple guide on how you can file in an issue, or submit a pull request that is useful and effective.
If you need help, or want to talk to the authors, feel free to visit our GitHub Discussions forum, or chat with us at our
Telegram support group.
Before you ask a question, please read and follow this guide as far as possible. Without doing so might lead to unfriendly
or no response from the community, although we try to refrain from doing so.

9.1 Reporting bugs

9.1.1 Before submitting a bug report

• Please ensure if your issue is about the framework itself, not about any module. Reports about modules should go
to their respective issue trackers.

• Read through the documentation to see if it has covered your question.
• Check the current issue list to see if it’s been reported.

33

https://github.com/ehForwarderBot/ehForwarderBot/discussions
https://telegram.me/efbsupport
http://www.catb.org/~esr/faqs/smart-questions.html
https://efb.1a23.studio/issues

EH Forwarder Bot Documentation, Release 2.1.1

9.1.2 How Do I Submit A (Good) Bug Report?

• Use a clear and descriptive title for the issue to identify the problem.
• Describe the exact steps which reproduce the problem in as many details as possible.
• Provide specific examples to demonstrate the steps.
• Describe the behavior you observed after following the steps and point out what exactly is the problem with
that behavior.

• Explain which behavior you expected to see instead and why.
• If the problem wasn’t triggered by a specific action, describe what you were doing before the problem happened
and share more information using the guidelines below.

• Provide log related to the issue. Use the verbose flag to start the logging process, and submit the entire log from
the first step you performed.

Provide more context by answering these questions:
• Did the problem start happening recently (e.g. after updating to the latest version) or was this always a problem?
• Can you reliably reproduce the issue? If not, provide details about how often the problem happens and under
which conditions it normally happens.

Include details about your configuration and environment:
• What version of EFB are you using? You can get the version by using the flag --version.
• What’s the name and version of the OS you’re using?

Attention: When submitting your log, please remember to hide your private information.

9.2 Suggesting enhancements

If you have any suggestions, feel free to raise it up in the issue list. Please try to provide as much details as you can, that
includes:

• Use a clear and descriptive title for the issue to identify the suggestion.
• Give details on how the enhancement behave.
• Provide specific examples to demonstrate the abstraction.
• The enhancement to the framework must be applicable to considerably many IM platforms, not just for a single
IM. Suggestions for a specific IM should be made to their relative channel.
Adapted from Atom contribution guide by GitHub Inc.

34 Chapter 9. How to contribute

https://github.com/atom/atom/blob/master/CONTRIBUTING.md#reporting-bugs

EH Forwarder Bot Documentation, Release 2.1.1

9.3 Pull requests

When you have done some changes and want to submit it to us, fork it to your account and submit a GitHub pull request.
Please write a detailed description for your pull request on:

• What changes have you made?
• What problem have you solved?
• Which issue have you addressed if applicable.

Always write a clear log message for your commits. One-line messages are fine for small changes, but bigger changes
needs a detailed description after the one-liner.

Adapted from OpenGovernment contribution guide by Participatory Politics Foundation

9.3. Pull requests 35

https://github.com/opengovernment/opengovernment

EH Forwarder Bot Documentation, Release 2.1.1

36 Chapter 9. How to contribute

CHAPTER10

API documentations

This section contains documentations for the current API of EH Forwarder Bot.
The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “NOT RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted
as described in BCP 14 [RFC 2119] [RFC 8174] when, and only when, they appear in all capitals, as shown here.

10.1 Channel

class ehforwarderbot.channel.Channel(instance_id=None)
The abstract channel class.
channel_name

A human-friendly name of the channel.
Type str

channel_emoji
Emoji icon of the channel. Recommended to use a visually-length-one (i.e. a single grapheme cluster) emoji
or other symbol that represents the channel best.

Type str
channel_id

Unique identifier of the channel. Convention of IDs is specified in Packaging and Publish. This ID will be
appended with its instance ID when available.

Type ModuleID (str)
instance_id

The instance ID if available.
Type str

__init__(instance_id=None)
Initialize the channel. Inherited initializer MUST call the “super init” method at the beginning.

37

https://tools.ietf.org/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119.html
https://datatracker.ietf.org/doc/html/rfc8174.html
https://docs.python.org/3/library/stdtypes.html#str
http://unicode.org/reports/tr29/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

Parameters instance_id (Optional[NewType()(InstanceID, str)]) – Instance ID
of the channel.

get_message_by_id(chat, msg_id)
Get message entity by its ID. Applicable to both master channels and slave channels. Return None when
message not found.
Override this method and raise EFBOperationNotSupported if it is not feasible to perform this for
your platform.

Parameters
• chat (Chat) – Chat in slave channel / middleware.
• msg_id (NewType()(MessageID, str)) – ID of message from the chat in slave chan-
nel / middleware.

Return type Optional[Message]
abstract poll()

Method to poll for messages. This method is called when the framework is initialized. This method SHOULD
be blocking.

abstract send_message(msg)
Process a message that is sent to, or edited in this channel.

Notes
Master channel MUST take care of the returned object that contains the updated message ID. Depends on
the implementation of slave channels, the message ID MAY change even after being edited. The old message
ID MAY be disregarded for the new one.

Parameters msg (Message) – Message object to be processed.
Returns The samemessage object. Message ID of the objectMAYbe changed by the slave channel

once sent. This can happen even when the message sent is an edited message.
Return type Message

Raises
• EFBChatNotFound – Raised when a chat required is not found.
• EFBMessageTypeNotSupported – Raised when the message type sent is not sup-
ported by the channel.

• EFBOperationNotSupported – Raised when an message edit request is sent, but not
supported by the channel.

• EFBMessageNotFound – Raised when an existing message indicated is not found. E.g.:
The message to be edited, the message referred in the msg.target attribute.

• EFBMessageError – Raised when other error occurred while sending or editing the mes-
sage.

abstract send_status(status)
Process a status that is sent to this channel.

Parameters status (Status) – the status object.
Raises

38 Chapter 10. API documentations

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional

EH Forwarder Bot Documentation, Release 2.1.1

• EFBChatNotFound – Raised when a chat required is not found.
• EFBMessageNotFound – Raised when an existing message indicated is not found. E.g.:
The message to be removed.

• EFBOperationNotSupported – Raised when the channel does not support message
removal.

• EFBMessageError – Raised when other error occurred while removing the message.

Note: Exceptions SHOULD NOT be raised from this method by master channels as it would be hard for a
slave channel to process the exception.
This method is not applicable to Slave Channels.

stop_polling()
When EFB framework is asked to stop gracefully, this method is called to each channel object to stop all
processes in the channel, save all status if necessary, and terminate polling.
When the channel is ready to stop, the polling function MUST stop blocking. EFB framework will quit
completely when all polling threads end.

class ehforwarderbot.channel.MasterChannel(instance_id=None)
The abstract master channel class. All master channels MUST inherit this class.

class ehforwarderbot.channel.SlaveChannel(instance_id=None)
The abstract slave channel class. All slave channels MUST inherit this class.
supported_message_types

Types of messages that the slave channel accepts as incoming messages. Master channels may use this value
to decide what type of messages to send to your slave channel.
Leaving this empty may cause the master channel to refuse sending anything to your slave channel.

Type Set[MsgType]
suggested_reactions

A list of suggested reactions to be applied to messages.
Reactions SHOULD be ordered in a meaningful way, e.g., the order used by the IM platform, or frequency
of usage. Note that it is not necessary to list all suggested reactions if that is too long, or not feasible.
Set to None when it is known that no reaction is supported to ANY message in the channel. Set to empty list
when it is not feasible to provide a list of suggested reactions, for example, the list of reactions is different for
each chat or message.

Type Optional[Sequence[str]]
abstract get_chat(chat_uid)

Get the chat object from a slave channel.
Parameters chat_uid (NewType()(ChatID, str)) – ID of the chat.
Returns The chat found.
Return type .Chat
Raises EFBChatNotFound – Raised when a chat required is not found.

abstract get_chat_picture(chat)
Get the profile picture of a chat. Profile picture is also referred as profile photo, avatar, “head image” some-
times.

10.1. Channel 39

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

Parameters chat (.Chat) – Chat to get picture from.
Returns

Opened temporary file object. The file object MUST have appropriate extension name that
matches to the format of picture sent, and seek to position 0.
It MAY be deleted or discarded once closed, if not needed otherwise.

Return type BinaryIO
Raises

• EFBChatNotFound – Raised when a chat required is not found.
• EFBOperationNotSupported – Raised when the chat does not offer a profile picture.

Examples

if chat.channel_uid != self.channel_uid:
raise EFBChannelNotFound()

file = tempfile.NamedTemporaryFile(suffix=".png")
response = requests.post("https://api.example.com/get_profile_picture/png",

data={"uid": chat.uid})
if response.status_code == 404:

raise EFBChatNotFound()
file.write(response.content)
file.seek(0)
return file

abstract get_chats()
Return a list of available chats in the channel.

Returns a list of available chats in the channel.
Return type Collection[Chat]

get_extra_functions()
Get a list of additional features

Return type Dict[NewType()(ExtraCommandName, str), Callable]
Returns A dict of methods marked as additional features. Method can be called with

get_extra_functions()["methodName"]().

10.1.1 Common operations

Sending messages and statuses

Sending messages and statuses to other channels is the most common operation of a channel. When enough information
is gathered from external sources, the channel would then further process and pack them into the relevant objects, i.e.
Message and Status.
When the object is built, the channel should sent it to the coordinator for following steps.
For now, both Message and Status has an attribute that indicates that where this object would be delivered to
(deliver_to and destination_channel). This is used by the coordinator when delivering the message.
Messages MUST be sent using coordinator.send_message(). Statuses MUST be sent using coordinator.
send_status().

40 Chapter 10. API documentations

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable

EH Forwarder Bot Documentation, Release 2.1.1

When the object is passed onto the coordinator, it will be further processed by the middleware and then to its destination.
For example, to send a message to the master channel

def on_message(self, data: Dict[str, Any]):
"""Callback when a message is received by the slave channel from
the IM platform.
"""
Prepare message content ...
message = coordinator.send_message(Message(

chat=chat,
author=author,
type=message_type,
text=text,
more details ...
uid=data['uid'],
deliver_to=coordinator.master

))
Post-processing ...

10.1.2 About Channel ID

With the introduction of instance IDs, it is required to use the self.channel_id or equivalent instead of any hard-
coded ID or constants while referring to the channel (e.g. while retrieving the path to the configuration files, creating chat
and message objects, etc).

10.2 Chat and Chat Members

Inheritance diagram

ABC

BaseChat

Chat

ChatMember

GroupChat

PrivateChat

SystemChat

SelfChatMember

SystemChatMember

ChatNotificationStateEnum

10.2. Chat and Chat Members 41

EH Forwarder Bot Documentation, Release 2.1.1

Summary

PrivateChat(*[, channel, middleware, ...]) A private chat, where usually only the User Themself and
the other participant are in the chat.

SystemChat(*[, channel, middleware, ...]) A system chat, where usually only the User Themself and
the other participant (system chat member) are in the
chat.

GroupChat(*[, channel, middleware, ...]) A group chat, where there are usually multiple members
present.

ChatMember(chat, *[, name, alias, uid, id, ...]) Member of a chat.
SelfChatMember(chat, *[, name, alias, id, ...]) The User Themself as member of a chat.
SystemChatMember(chat, *[, name, alias, id, ...]) A system account/prompt as member of a chat.
ChatNotificationState(value) Indicates the notifications settings of a chat in its slave

channel or middleware.

Classes

class ehforwarderbot.chat.BaseChat(*, channel=None, middleware=None, module_name='',
channel_emoji='', module_id='', name='', alias=None, uid='',
id='', vendor_specific=None, description='')

Bases: abc.ABC
Base chat class, this is an abstract class sharing properties among all chats and members. No instance can be created
directly from this class.

Note: BaseChat objects are picklable, thus it is RECOMMENDED to keep any object of its subclass also
picklable.

module_id
Unique ID of the module.

Type ModuleID (str)
channel_emoji

Emoji of the channel, empty string if the chat is from a middleware.
Type str

module_name
Name of the module.

Type ModuleID (str)
name

Name of the chat.
Type str

alias
Alternative name of the chat, usually set by user.

Type Optional[str]
uid

Unique ID of the chat. This MUST be unique within the channel.
Type ChatID (str)

42 Chapter 10. API documentations

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

description
A text description of the chat, usually known as “bio”, “description”, “purpose”, or “topic” of the chat.

Type str
vendor_specific

Any vendor specific attributes.
Type Dict[str, Any]

__init__(*, channel=None, middleware=None, module_name='', channel_emoji='', module_id='', name='',
alias=None, uid='', id='', vendor_specific=None, description='')

Parameters
• channel (Optional[SlaveChannel]) – Provide the channel object to fill mod-
ule_name, channel_emoji, and module_id automatically.

• middleware (Optional[Middleware]) – Provide the middleware object to fill mod-
ule_name, and module_id automatically.

• module_id (NewType()(ModuleID, str)) – Unique ID of the module.
• channel_emoji (str) – Emoji of the channel, empty string if the chat is from a mid-
dleware.

• module_name (str) – Name of the module.
• name (str) – Name of the chat.
• alias (Optional[str]) – Alternative name of the chat, usually set by user.
• uid (NewType()(ChatID, str)) – Unique ID of the chat. This MUST be unique within
the channel.

• description (str) – A text description of the chat, usually known as “bio”, “descrip-
tion”, “purpose”, or “topic” of the chat.

• vendor_specific (Dict[str, Any]) – Any vendor specific attributes.

copy()
Return a shallow copy of the object.

Return type TypeVar(_BaseChatSelf, bound= BaseChat, covariant=True)
property display_name: str

Shortcut property, equivalent to alias or name

Return type str

property long_name: str
Shortcut property, if alias exists, this will provide the alias with name in parenthesis. Otherwise, this will
return the name

Return type str

abstract verify()
Verify the completeness of the data.

Raises AssertionError – When this chat is invalid.

10.2. Chat and Chat Members 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AssertionError

EH Forwarder Bot Documentation, Release 2.1.1

class ehforwarderbot.chat.Chat(*, channel=None, middleware=None, module_name='',
channel_emoji='', module_id='', name='', alias=None, id='', uid='',
vendor_specific=None, description='', members=None,
notification=ChatNotificationState.ALL, with_self=True)

Bases: ehforwarderbot.chat.BaseChat, abc.ABC
A chat object, indicates a user, a group, or a system chat. This class is abstract. No instance can be created directly
from this class.
If your IM platform is providing an ID of the User Themself, and it is using this ID to indicate the author of a
message, you SHOULD update Chat.self.uid accordingly.

>>> channel.my_chat_id
"david_divad"
>>> chat = Chat(channel=channel, name="Alice", uid=ChatID("alice123"))
>>> chat.self.uid = channel.my_chat_id

By doing so, you can get the author in one step:

author = chat.get_member(author_id)

… instead of using a condition check:

if author_id == channel.my_chat_id:
author = chat.self

else:
author = chat.get_member(author_id)

Note: Chat objects are picklable, thus it is RECOMMENDED to keep any object of its subclass also picklable.

module_id
Unique ID of the module.

Type ModuleID (str)
channel_emoji

Emoji of the channel, empty string if the chat is from a middleware.
Type str

module_name
Name of the module.

Type str
name

Name of the chat.
Type str

alias
Alternative name of the chat, usually set by user.

Type Optional[str]
uid

Unique ID of the chat. This MUST be unique within the channel.
Type ChatID (str)

44 Chapter 10. API documentations

https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

description
A text description of the chat, usually known as “bio”, “description”, “purpose”, or “topic” of the chat.

Type str
notification

Indicate the notification settings of the chat in its slave channel (or middleware), defaulted to ALL.
Type ChatNotificationState

members
Provide a list of members in the chat. Defaulted to an empty list.
You can extend this object and implement a @property method set for loading members on demand.
Note that this list may include members created by middlewares when the object is a part of a message, and
these members MAY not appear when trying to retrieve from the slave channel directly. These members
would have a different module_id specified from the chat.

Type list of ChatMember
vendor_specific

Any vendor specific attributes.
Type Dict[str, Any]

self
the User as a member of the chat (if available).

Type Optional[SelfChatMember]
__init__(*, channel=None, middleware=None, module_name='', channel_emoji='', module_id='', name='',

alias=None, id='', uid='', vendor_specific=None, description='', members=None,
notification=ChatNotificationState.ALL, with_self=True)

Keyword Arguments
• module_id (str) – Unique ID of the module.
• channel_emoji (str) – Emoji of the channel, empty string if the chat is from a mid-
dleware.

• module_name – Name of the module.
• name (str) – Name of the chat.
• alias (Optional[str]) – Alternative name of the chat, usually set by user.
• id – Unique ID of the chat. This MUST be unique within the channel.
• description (str) – A text description of the chat, usually known as “bio”, “descrip-
tion”, “purpose”, or “topic” of the chat.

• notification (ChatNotificationState) – Indicate the notification settings of
the chat in its slave channel (or middleware), defaulted to ALL.

• members (MutableSequence[ChatMember]) – Provide a list of members of the chat.
Defaulted to an empty list.

• vendor_specific (Dict[str, Any]) – Any vendor specific attributes.
• with_self (bool) – Initialize the chat with the User Themself as a member.

10.2. Chat and Chat Members 45

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

EH Forwarder Bot Documentation, Release 2.1.1

add_member(name, uid, alias=None, id='', vendor_specific=None, description='', middleware=None)
Add a member to the chat.

Tip: This method does not check for duplicates. Only add members with this method if you are sure that
they are not added yet. To check if the member is already added before adding, you can do something like
this:

with contextlib.suppress(KeyError):
return chat.get_member(uid)

return chat.add_member(name, uid, alias=..., vendor_specific=...)

Parameters
• name (str) – Name of the member.
• uid (NewType()(ChatID, str)) – ID of the member.

Keyword Arguments
• alias (Optional[str]) – Alias of the member.
• vendor_specific (Dict[str, Any]) – Any vendor specific attributes.
• description (str) – A text description of the chat, usually known as “bio”, “descrip-
tion”, “purpose”, or “topic” of the chat.

• middleware (Optional[Middleware]) – Initialize this chat as a part of a middleware.
Return type ChatMember

add_self()
Add self to the list of members.

Raises AssertionError – When there is already a self in the list of members.
Return type SelfChatMember

add_system_member(name='', alias=None, id='', uid='', vendor_specific=None, description='',
middleware=None)

Add a system member to the chat.
Useful for slave channels and middlewares to create an author of a message from a system member when the
“system” member is intended to become a member of the chat.

Tip: This method does not check for duplicates. Only add members with this method if you are sure that
they are not added yet.

Keyword Arguments
• name (str) – Name of the member.
• uid – ID of the member.
• alias (Optional[str]) – Alias of the member.
• vendor_specific (Dict[str, Any]) – Any vendor specific attributes.
• description (str) – A text description of the chat, usually known as “bio”, “descrip-
tion”, “purpose”, or “topic” of the chat.

46 Chapter 10. API documentations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

• middleware (Optional[Middleware]) – Initialize this chat as a part of a middleware.
Return type SystemChatMember

get_member(member_id)
Find a member of chat by its ID.

Parameters member_id (NewType()(ChatID, str)) – ID of the chat member.
Return type ChatMember

Returns the chat member.
Raises KeyError – when the ID provided is not found.

property has_self: bool
Indicate if this chat has yourself.

Return type bool

make_system_member(name='', alias=None, id='', uid='', vendor_specific=None, description='',
middleware=None)

Make a system member for this chat.
Useful for slave channels and middlewares to create an author of a message from a system member when the
“system” member is NOT intended to become a member of the chat.

Keyword Arguments
• name (str) – Name of the member.
• uid – ID of the member.
• alias (Optional[str]) – Alias of the member.
• vendor_specific (Dict[str, Any]) – Any vendor specific attributes.
• description (str) – A text description of the chat, usually known as “bio”, “descrip-
tion”, “purpose”, or “topic” of the chat.

• middleware (Optional[Middleware]) – Initialize this chat as a part of a middleware.
Return type SystemChatMember

self: Optional[ehforwarderbot.chat.SelfChatMember]
The user as a member of the chat (if available).

class ehforwarderbot.chat.ChatMember(chat, *, name='', alias=None, uid='', id='',
vendor_specific=None, description='', middleware=None)

Bases: ehforwarderbot.chat.BaseChat
Member of a chat. Usually indicates a member in a group, or the other participant in a private chat. Chat bots
created by the users of the IM platform is also considered as a plain ChatMember.
To represent the User Themself, use SelfChatMember.
To represent a chat member that is a part of the system, the slave channel, or a middleware, use SystemChat-
Member.
ChatMembers MUST be created with reference of the chat it belongs to. Different objects MUST be created
even when the same person appears in different groups or in a private chat.
ChatMembers are RECOMMENDED to be created using Chat.add_member() method.

10.2. Chat and Chat Members 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

Note: ChatMember objects are picklable, thus it is RECOMMENDED to keep any object of its subclass also
picklable.

__init__(chat, *, name='', alias=None, uid='', id='', vendor_specific=None, description='',
middleware=None)

Parameters chat (Chat) – Chat associated with this member.
Keyword Arguments

• name (str) – Name of the member.
• alias (Optional[str]) – Alternative name of the member, usually set by user.
• uid (ChatID (str)) – Unique ID of the member. This MUST be unique within the channel.
This ID can be the same with a private chat of the same person.

• description (str) – A text description of the member, usually known as “bio”, “de-
scription”, “summary” or “introduction” of the member.

• middleware (Middleware) – Initialize this chat as a part of a middleware.

verify()
Verify the completeness of the data.

Raises AssertionError – When this chat is invalid.
class ehforwarderbot.chat.ChatNotificationState(value)

Bases: enum.Enum
Indicates the notifications settings of a chat in its slave channel or middleware. If an exact match is not available,
choose the most similar one.
ALL = -1

All messages in the chat triggers notifications.
MENTIONS = 1

Notifications are sent only when the User is mentioned in the message, in the form of @-references or quote-
reply (message target).

NONE = 0
No notification is sent to slave IM channel at all.

class ehforwarderbot.chat.GroupChat(*, channel=None, middleware=None, module_name='',
channel_emoji='', module_id='', name='', alias=None, id='',
uid='', vendor_specific=None, description='',
notification=ChatNotificationState.ALL, with_self=True)

Bases: ehforwarderbot.chat.Chat
A group chat, where there are usually multiple members present.
Members can be added with the add_member() method.
If the with_self argument is True (which is the default setting), the User Themself would also be initialized
as a member of the chat.

48 Chapter 10. API documentations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/enum.html#enum.Enum

EH Forwarder Bot Documentation, Release 2.1.1

Examples

>>> group = GroupChat(channel=slave_channel, name="Wonderland", uid=ChatID(
↪"wonderland001"))

>>> group.add_member(name="Alice", uid=ChatID("alice"))
ChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave channel>,␣

↪name='Alice', alias=None, uid='alice', vendor_specific={}, description='')
>>> group.add_member(name="bob", alias="Bob James", uid=ChatID("bob"))
ChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave channel>,␣

↪name='bob', alias='Bob James', uid='bob', vendor_specific={}, description='')
>>> from pprint import pprint
>>> pprint(group.members)
[SelfChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave␣

↪channel>, name='You', alias=None, uid='__self__', vendor_specific={},␣
↪description=''),
ChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave channel>,␣
↪name='Alice', alias=None, uid='alice', vendor_specific={}, description=''),
ChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave channel>,␣
↪name='bob', alias='Bob James', uid='bob', vendor_specific={}, description='')]

Note: GroupChat objects are picklable, thus it is RECOMMENDED to keep any object of its subclass also
picklable.

verify()
Verify the completeness of the data.

Raises AssertionError – When this chat is invalid.
class ehforwarderbot.chat.PrivateChat(*, channel=None, middleware=None, module_name='',

channel_emoji='', module_id='', name='', alias=None, id='',
uid='', vendor_specific=None, description='',
notification=ChatNotificationState.ALL, with_self=True,
other_is_self=False)

Bases: ehforwarderbot.chat.Chat
A private chat, where usually only the User Themself and the other participant are in the chat. Chat bots SHOULD
also be categorized under this type.
There SHOULD only be at most one non-system member of the chat apart from the User Themself, otherwise it
might lead to unintended behavior.
This object is by default initialized with the other participant as its member.
If the with_self argument is True (which is the default setting), the User Themself would also be initialized
as a member of the chat.

Parameters other – the other participant of the chat as a member

Note: PrivateChat objects are picklable, thus it is RECOMMENDED to keep any object of its subclass also
picklable.

verify()
Verify the completeness of the data.

Raises AssertionError – When this chat is invalid.

10.2. Chat and Chat Members 49

https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/exceptions.html#AssertionError

EH Forwarder Bot Documentation, Release 2.1.1

class ehforwarderbot.chat.SelfChatMember(chat, *, name='', alias=None, id='', uid='',
vendor_specific=None, description='',
middleware=None)

Bases: ehforwarderbot.chat.ChatMember
The User Themself as member of a chat.
SelfChatMembers are RECOMMENDED to be created together with a chat object by setting with_self
value to True. The created object is accessible at Chat.self.
The default ID of a SelfChatMember object is SelfChatMember.SELF_ID, and the default name is a
translated version of the word “You”.
You are RECOMMENDED to change the ID of this object if provided by your IM platform, and you MAY change
the name or alias of this object depending on your needs.

Note: SelfChatMember objects are picklable, thus it is RECOMMENDED to keep any object of its subclass
also picklable.

SELF_ID
The default ID of a SelfChatMember.

__init__(chat, *, name='', alias=None, id='', uid='', vendor_specific=None, description='',
middleware=None)

Parameters chat (Chat) – Chat associated with this member.
Keyword Arguments

• name (str) – Name of the member.
• alias (Optional[str]) – Alternative name of the member, usually set by user.
• uid (ChatID (str)) – Unique ID of the member. This MUST be unique within the channel.
This ID can be the same with a private chat of the same person.

• description (str) – A text description of the member, usually known as “bio”, “de-
scription”, “summary” or “introduction” of the member.

• middleware (Middleware) – Initialize this chat as a part of a middleware.

class ehforwarderbot.chat.SystemChat(*, channel=None, middleware=None, module_name='',
channel_emoji='', module_id='', name='', alias=None, id='',
uid='', vendor_specific=None, description='',
notification=ChatNotificationState.ALL, with_self=True)

Bases: ehforwarderbot.chat.Chat
A system chat, where usually only the User Themself and the other participant (system chat member) are in the
chat. This object is used to represent system chat where the other participant is neither a user nor a chat bot of the
remote IM.
Middlewares are RECOMMENDED to create chats with this type when they want to send messages in this type.
This object is by default initialized with the system participant as its member.
If the with_self argument is True (which is the default setting), the User Themself would also be initialized
as a member of the chat.

Parameters other – the other participant of the chat as a member

50 Chapter 10. API documentations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

Note: SystemChat objects are picklable, thus it is RECOMMENDED to keep any object of its subclass also
picklable.

verify()
Verify the completeness of the data.

Raises AssertionError – When this chat is invalid.
class ehforwarderbot.chat.SystemChatMember(chat, *, name='', alias=None, id='', uid='',

vendor_specific=None, description='',
middleware=None)

Bases: ehforwarderbot.chat.ChatMember
A system account/prompt as member of a chat.
Use this chat to send messages that is not from any specific member. Middlewares are RECOMMENDED to use
this member type to communicate with the User in an existing chat.
Chat bots created by the users of the IM platform SHOULD NOT be created as a SystemChatMember, but a
plain ChatMember instead.
SystemChatMembers are RECOMMENDED to be created using Chat.add_system_member() or
Chat.make_system_member() method.

Note: SystemChatMember objects are picklable, thus it is RECOMMENDED to keep any object of its
subclass also picklable.

SYSTEM_ID
The default ID of a SystemChatMember.

__init__(chat, *, name='', alias=None, id='', uid='', vendor_specific=None, description='',
middleware=None)

Parameters chat (Chat) – Chat associated with this member.
Keyword Arguments

• name (str) – Name of the member.
• alias (Optional[str]) – Alternative name of the member, usually set by user.
• uid (ChatID (str)) – Unique ID of the member. This MUST be unique within the channel.
This ID can be the same with a private chat of the same person.

• description (str) – A text description of the member, usually known as “bio”, “de-
scription”, “summary” or “introduction” of the member.

• middleware (Middleware) – Initialize this chat as a part of a middleware.

10.2. Chat and Chat Members 51

https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

10.3 Constants

class ehforwarderbot.constants.MsgType(value)
An enumeration.
Animation = 'Animation'

Message with an animation, usually in the form of GIF or soundless video.
Audio = 'Voice'

Audio messages (deprecated).
Deprecated since version Use: Voice if the message has a voice message (usually recorded). Use File if
the message has a music file (usually uploaded).

File = 'File'
File message.

Image = 'Image'
Image (picture) message.

Notes
Animated GIF images must use Animation type instead.

Link = 'Link'
Message that is mainly one specific link, or a text message with one link preview.

Location = 'Location'
Location message.

Status = 'Status'
Status from a user in a chat, usually typing and uploading.

Sticker = 'Sticker'
Pictures sent with few text caption, usually a transparent background, and a limited number of options that is
usually not from the user’s photo gallery.

Text = 'Text'
Text message

Unsupported = 'Unsupported'
Any type of message that is not listed above. A text representation is required.

Video = 'Video'
Video message

Voice = 'Voice'
Voice messages, usually recorded right before sending.

52 Chapter 10. API documentations

EH Forwarder Bot Documentation, Release 2.1.1

10.4 Coordinator

Coordinator among channels.
ehforwarderbot.coordinator.profile

Name of current profile..
Type str

ehforwarderbot.coordinator.mutex
Global interaction thread lock.

Type threading.Lock
ehforwarderbot.coordinator.master

The running master channel object.
Type Channel

ehforwarderbot.coordinator.slaves
Dictionary of running slave channel object. Keys are the unique identifier of the channel.

Type Dict[str, EFBChannel]
ehforwarderbot.coordinator.middlewares

List of middlewares
Type List[Middleware]

ehforwarderbot.coordinator.add_channel(channel)
Register the channel with the coordinator.

Parameters channel (Channel) – Channel to register
ehforwarderbot.coordinator.add_middleware(middleware)

Register a middleware with the coordinator.
Parameters middleware (Middleware) – Middleware to register

ehforwarderbot.coordinator.get_module_by_id(module_id)
Return the module instance of a provided module ID

Parameters module_id (NewType()(ModuleID, str)) – Module ID, with instance ID if avail-
able.

Return type Union[Channel, Middleware]
Returns Module instance requested.
Raises NameError – When the module is not found.

ehforwarderbot.coordinator.master: ehforwarderbot.channel.MasterChannel
The instance of the master channel.

ehforwarderbot.coordinator.master_thread: Optional[threading.Thread] = None
The thread running poll() of the master channel.

ehforwarderbot.coordinator.middlewares:
List[ehforwarderbot.middleware.Middleware] = []

Instances of middlewares. Sorted in the order of execution.
ehforwarderbot.coordinator.mutex: _thread.allocate_lock = <unlocked
_thread.lock object>

Mutual exclusive lock for user interaction through CLI interface

10.4. Coordinator 53

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Lock
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/exceptions.html#NameError
https://docs.python.org/3/library/threading.html#threading.Thread

EH Forwarder Bot Documentation, Release 2.1.1

ehforwarderbot.coordinator.profile: str = 'default'
Current running profile name

ehforwarderbot.coordinator.send_message(msg)
Deliver a new message or edited message to the destination channel.

Parameters msg (Message) – The message
Return type Optional[Message]
Returns Themessage processed and delivered by the destination channel, includes the updatedmessage

ID if sent to a slave channel. Returns None if the message is not sent.
ehforwarderbot.coordinator.send_status(status)

Deliver a status to the destination channel.
Parameters status (Status) – The status

ehforwarderbot.coordinator.slave_threads: Dict[ModuleID, threading.Thread] =
{}

Threads running poll() from slave channels. Keys are the channel IDs.
ehforwarderbot.coordinator.slaves: Dict[ModuleID,
ehforwarderbot.channel.SlaveChannel] = {}

Instances of slave channels. Keys are the channel IDs.
ehforwarderbot.coordinator.translator: gettext.NullTranslations =
<gettext.NullTranslations object>

Internal GNU gettext translator.

10.5 Exceptions

exception ehforwarderbot.exceptions.EFBException
Bases: Exception
A general class to indicate that the exception is from EFB framework.

exception ehforwarderbot.exceptions.EFBChatNotFound
Bases: ehforwarderbot.exceptions.EFBException
Raised by a slave channel when a chat indicated is not found.
Can be raised by any method that involves a chat or a message.

exception ehforwarderbot.exceptions.EFBChannelNotFound
Bases: ehforwarderbot.exceptions.EFBException
Raised by the coordinator when the message sent delivers to a missing channel.

exception ehforwarderbot.exceptions.EFBMessageError
Bases: ehforwarderbot.exceptions.EFBException
Raised by slave channel for any other error occurred when sending a message or a status.
Can be raised in Channel.send_message() and Channel.send_status().

exception ehforwarderbot.exceptions.EFBMessageNotFound
Bases: ehforwarderbot.exceptions.EFBMessageError
Raised by a slave channel when a message indicated is not found.
Can be raised in Channel.send_message() (edited message / target message not found) and in Channel.
send_status() (message to delete is not found).

54 Chapter 10. API documentations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/threading.html#threading.Thread
https://docs.python.org/3/library/gettext.html#gettext.NullTranslations
https://docs.python.org/3/library/exceptions.html#Exception

EH Forwarder Bot Documentation, Release 2.1.1

exception ehforwarderbot.exceptions.EFBMessageTypeNotSupported
Bases: ehforwarderbot.exceptions.EFBMessageError
Raised by a slave channel when the indicated message type is not supported.
Can be raised in Channel.send_message().

exception ehforwarderbot.exceptions.EFBOperationNotSupported
Bases: ehforwarderbot.exceptions.EFBMessageError
Raised by slave channels when a chat operation is not supported. E.g.: cannot edit message, cannot delete message.
Can be raised in Channel.send_message() and Channel.send_status().

exception ehforwarderbot.exceptions.EFBMessageReactionNotPossible
Bases: ehforwarderbot.exceptions.EFBException
Raised by slave channel when a message reaction request from master channel is not possible to be processed.
Can be raised in Channel.send_status().

10.6 Message

Summary

Message(*[, attributes, chat, author, ...]) A message.
LinkAttribute(title[, description, image, url]) Attributes for link messages.
LocationAttribute(latitude, longitude) Attributes for location messages.
StatusAttribute(status_type[, timeout]) Attributes for status messages.
MessageCommands(commands) Message commands.
MessageCommand(name, callable_name[, args, ...]) A message command.
Substitutions(substitutions) Message text substitutions, or “@-references”.

Classes

class ehforwarderbot.message.Message(*, attributes=None, chat=None, author=None,
commands=None, deliver_to=None, edit=False,
edit_media=False, file=None, filename=None,
is_system=False, mime=None, path=None, reactions=None,
substitutions=None, target=None, text='',
type=MsgType.Unsupported, uid=None,
vendor_specific=None)

A message.

Note: Message objects are picklable, thus it is strongly RECOMMENDED to keep any object of its subclass
also picklable.

Keyword Arguments
• attributes (Optional[MessageAttribute]) – Attributes used for a specific message
type. Only specific message type requires this attribute. Defaulted to None.
– Link: LinkAttribute

10.6. Message 55

EH Forwarder Bot Documentation, Release 2.1.1

– Location: LocationAttribute
– Status: Typing/Sending files/etc.: StatusAttribute

Note: Do NOT use object of the abstract class MessageAttribute for attributes,
but object of specific class instead.

• chat (Chat) – Sender of the message.
• author (ChatMember) – Author of this message. Author of the message MUST be indi-
cated as a part of the same chat this message is from. If the message is sent from the User
Themself, this MUST be an object of SelfChatMember.
Note that the author MAY not be inside members of the chat of this message. The author
MAY have a different module_id from the chat, and could be unretrievable otherwise.

• commands (Optional[MessageCommands]) – Commands attached to the message
This attribute will be ignored in _Status_ messages.

• deliver_to (Channel) – The channel that the message is to be delivered to.
• edit (bool) – Flag this up if the message is edited. Flag only this if no multimedia file is
modified, otherwise flag up both this one and edit_media as well.
If no media file is modified, the edited message MAY carry no information about the file.
This attribute will be ignored in _Status_ messages.

• edit_media (bool) – Flag this up if any file attached to the message is modified. If this
value is true, editMUST also be True. This attribute is ignored if the message type is not
supposed to contain any media file, e.g. Text, Location, etc.
This attribute will be ignored in _Status_ messages.

• file (Optional[BinaryIO]) – File object to multimedia file, type “rb”. None if N/A.
Recommended to use NamedTemporaryFile. The file SHOULD be able to be safely
deleted (or otherwise discarded) once closed. All file object MUST be sought back to 0
(file.seek(0)) before sending.

• filename (Optional[str]) – File name of the multimedia file. None if N/A
• is_system (bool) – Mark as true if this message is a system message.
• mime (Optional[str]) – MIME type of the file. None if N/A
• path (Optional[Path]) – Local path of multimedia file. None if N/A
• reactions (Dict[str, Collection[Chat]]) – Indicate reactions to the message. Dictionary
key is the canonical name of reaction, usually an emoji. Value is a collection of users who re-
acted to the message with that certain emoji. All Chat objects in this dict MUST be members
in the chat of this message.
This attribute will be ignored in _Status_ messages.

• substitutions (Optional[Substitutions]) – Substitutions of messages, usually used
when the some parts of the text of the message refers to another user or chat.
This attribute will be ignored in _Status_ messages.

• target (Optional[Message]) – Target message (usually for messages that “replies to” an-
other message).
This attribute will be ignored in _Status_ messages.

56 Chapter 10. API documentations

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

Note: This message MAY be a “minimum message”, with only required fields:
– Message.chat

– Message.author

– Message.text

– Message.type

– Message.uid

• text (str) – Text of the message.
This attribute will be ignored in _Status_ messages.

• type (MsgType) – Type of message
• uid (str) – Unique ID of message. Usually stores the message ID from slave channel. This
ID MUST be unique among all chats in the same channel.

Note: Some channels may not support message editing. Some channels may issue a new uid
for edited message.

• vendor_specific (Dict[str, Any]) – A series of vendor specific attributes at-
tached. This can be used by any other channels or middlewares that is compatible with such
information. Note that no guarantee is provided for information in this section.

property link: Optional[ehforwarderbot.message.LinkAttribute]
Get the link attributes of the current message, if available.

Return type Optional[LinkAttribute]
property location: Optional[ehforwarderbot.message.LocationAttribute]

Get the location attributes of the current message, if available.
Return type Optional[LocationAttribute]

property status: Optional[ehforwarderbot.message.StatusAttribute]
Get the status attributes of the current message, if available.

Return type Optional[StatusAttribute]
verify()

Verify the validity of message.
Raises AssertionError – when the message is not valid

class ehforwarderbot.message.MessageAttribute
Bases: abc.ABC
Abstract class of a message attribute.

class ehforwarderbot.message.LinkAttribute(title, description=None, image=None, url='')
Bases: ehforwarderbot.message.MessageAttribute
Attributes for link messages.
title

Title of the link.
Type str

10.6. Message 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/abc.html#abc.ABC
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

description
Description of the link.

Type str, optional
image

Image/thumbnail URL of the link.
Type str, optional

url
URL of the link.

Type str
__init__(title, description=None, image=None, url='')

Parameters
• title (str) – Title of the link.
• description (str, optional) – Description of the link.
• image (str, optional) – Image/thumbnail URL of the link.
• url (str) – URL of the link.

class ehforwarderbot.message.LocationAttribute(latitude, longitude)
Bases: ehforwarderbot.message.MessageAttribute
Attributes for location messages.
latitude

Latitude of the location.
Type float

longitude
Longitude of the location.

Type float
__init__(latitude, longitude)

Parameters
• latitude (float) – Latitude of the location.
• longitude (float) – Longitude of the location.

class ehforwarderbot.message.MessageCommand(name, callable_name, args=None, kwargs=None)
Bases: object
A message command.
This object records a way to call a method in the module object. In case where the message has an author from
a different module from the chat, this function MUST be called on the author’s module.
The method specified MUST return either a str as result or None if this message will be edited or deleted for
further interactions.
name

Human-friendly name of the command.
Type str

58 Chapter 10. API documentations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

callable_name
Callable name of the command.

Type str
args

Arguments passed to the function.
Type Collection[Any]

kwargs
Keyword arguments passed to the function.

Type Mapping[str, Any]
__init__(name, callable_name, args=None, kwargs=None)

Parameters
• name (str) – Human-friendly name of the command.
• callable_name (str) – Callable name of the command.
• args (Optional[Collection[Any]]) – Arguments passed to the function. De-
faulted to empty list;

• kwargs (Optional[Mapping[str, Any]]) – Keyword arguments passed to the
function. Defaulted to empty dict.

class ehforwarderbot.message.MessageCommands(commands)
Bases: List[ehforwarderbot.message.MessageCommand]
Message commands.
Message commands allow user to take action to a specific message, including vote, add friends, etc.
commands

Commands for the message.
Type list of MessageCommand

__init__(commands)

Parameters commands (list of MessageCommand) – Commands for the message.

class ehforwarderbot.message.StatusAttribute(status_type, timeout=5000)
Bases: ehforwarderbot.message.MessageAttribute
Attributes for status messages.
Message with type Status notifies the other end to update a chat-specific status, such as typing, send files, etc.
status_type

Type of status, possible values are defined in the StatusAttribute.
timeout

Number of milliseconds for this status to expire. Default to 5 seconds.
Type Optional[int]

Types
List of status types supported

class Types(value)
Bases: enum.Enum

10.6. Message 59

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/enum.html#enum.Enum

EH Forwarder Bot Documentation, Release 2.1.1

TYPING
Used in status_type, represent the status of typing.

UPLOADING_FILE
Used in status_type, represent the status of uploading file.

UPLOADING_IMAGE
Used in status_type, represent the status of uploading image.

UPLOADING_VOICE
Used in status_type, represent the status of uploading voice.

UPLOADING_VIDEO
Used in status_type, represent the status of uploading video.

__init__(status_type, timeout=5000)

Parameters
• status_type (Types) – Type of status.
• timeout (Optional[int]) – Number of milliseconds for this status to expire. Default
to 5 seconds.

class ehforwarderbot.message.Substitutions(substitutions)
Bases: Dict[Tuple[int, int], Union[ehforwarderbot.chat.Chat, ehforwarderbot.chat.
ChatMember]]
Message text substitutions, or “@-references”.
This is for the case when user “@-referred” a list of users in the message. Substitutions here is a dict of corre-
spondence between the index of substring used to refer to a user/chat in the message and the chat object it referred
to.
Values of the dictionaryMUST be either a member of the chat (self or the other for private chats, group members
for group chats) or another chat of the slave channel.
A key in this dictionary is a tuple of two ints, where first of it is the starting position in the string, and the
second is the ending position defined similar to Python’s substring. A tuple of (3, 15) corresponds to msg.
text[3:15]. The value of the tuple (a, b)MUST satisfy 0 ≤ 𝑎 < 𝑏 ≤ 𝑙, where 𝑙 is the length of the message
text.
Type: Dict[Tuple[int, int], Chat]
property is_mentioned: bool

Returns True if you are mentioned in this message.
In the case where a chat (private or group) is mentioned in this message instead of a group member, you will
also be considered mentioned if you are a member of the chat.

Return type bool

60 Chapter 10. API documentations

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

EH Forwarder Bot Documentation, Release 2.1.1

10.6.1 Examples

Prelude: Defining related chats

master: MasterChannel = coordinator.master
slave: SlaveChannel = coordinator.slave['demo.slave']
alice: PrivateChat = slave.get_chat("alice101")
bob: PrivateChat = slave.get_chat("bobrocks")
wonderland: GroupChat = slave.get_chat("thewonderlandgroup")
wonderland_alice: ChatMember = wonderland.get_member("alice101")

Initialization and marking chats

1. A message delivered from slave channel to master channel

message = Message(
deliver_to=master,
chat=wonderland,
author=wonderland_alice,
More attributes go here...

)

2. A message delivered from master channel to slave channel

message = Message(
deliver_to=slave,
chat=alice,
author=alice.self,
More attributes go here...

)

Quoting a previous message (targeted message)

Data of the quoted message SHOULD be retrieved from recorded historical data. Message.deliver_to is not
required for quoted message, and complete data is not required here. For details, see Message.target.
You MAY use the Channel.get_message() method to get the message object from the sending channel, but this
might not always be possible depending on the implementation of the channel.

message.target = Message(
chat=alice,
author=alice.other,
text="Hello, world.",
type=MsgType.Text,
uid=MessageID("100000002")

)

10.6. Message 61

EH Forwarder Bot Documentation, Release 2.1.1

Edit a previously sent message

Message ID MUST be the ID from the slave channel regardless of where the message is delivered to.

message.edit = True
message.uid = MessageID("100000003")

Type-specific Information

1. Text message

message.type = MsgType.Text
message.text = "Hello, Wonderland."

2. Media message
Information related to media processing is described in Media processing.
The example below is for image (picture) messages. Audio, file, video, sticker works in the same way.
In non-text messages, the text attribute MAY be an empty string.

message.type = MsgType.Image
message.text = "Image caption"
message.file = NamedTemporaryFile(suffix=".png")
message.file.write(binary_data)
message.file.seek(0)
message.filename = "holiday photo.png"
message.mime = "image/png"

3. Location message
In non-text messages, the text attribute MAY be an empty string.

message.type = MsgType.Location
message.text = "I'm here! Come and find me!"
message.attributes = LocationAttribute(51.4826, -0.0077)

4. Link message
In non-text messages, the text attribute MAY be an empty string.

message.type = MsgType.Link
message.text = "Check it out!"
message.attributes = LinkAttribute(

title="Example Domain",
description="This domain is established to be used for illustrative␣

↪examples in documents.",
image="https://example.com/thumbnail.png",
url="https://example.com"

)

5. Status
In status messages, the text attribute is disregarded.

message.type = MsgType.Status
message.attributes = StatusAttribute(StatusAttribute.TYPING)

62 Chapter 10. API documentations

EH Forwarder Bot Documentation, Release 2.1.1

6. Unsupported message
text attribute is required for this type of message.

message.type = MsgType.Unsupported
message.text = "Alice requested USD 10.00 from you. "

"Please continue with your Bazinga App."

Additional information

1. Substitution
@-reference the User Themself, another member in the same chat, and the entire chat in the message
text.

message.text = "Hey @david, @bob, and @all. Attention!"
message.substitutions = Substitutions({

text[4:10] == "@david", here David is the user.
(4, 10): wonderland.self,
text[12:16] == "@bob", Bob is another member of the chat.
(12, 16): wonderland.get_member("bob"),
text[22:26] == "@all", this calls the entire group chat, hence the
chat object is set as the following value instead.
(22, 26): wonderland

})

2. Commands

message.text = "Carol sent you a friend request."
message.commands = MessageCommands([

EFBCommand(name="Accept", callable_name="accept_friend_request",
kwargs={"username": "carol_jhonos", "hash": "2a9329bd93f"}

↪),
EFBCommand(name="Decline", callable_name="decline_friend_request",

kwargs={"username": "carol_jhonos", "hash": "2a9329bd93f"})
])

10.7 Middleware

class ehforwarderbot.Middleware(instance_id=None)
Middleware class.
middleware_id

Unique ID of the middleware. Convention of IDs is specified in Packaging and Publish. This ID will be
appended with its instance ID when available.

Type str
middleware_name

Human-readable name of the middleware.
Type str

instance_id
The instance ID if available.

Type str

10.7. Middleware 63

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

__init__(instance_id=None)
Initialize the middleware. Inherited initializer MUST call the “super init” method at the beginning.

Parameters instance_id (Optional[NewType()(InstanceID, str)]) – Instance ID
of the middleware.

get_extra_functions()
Get a list of additional features

Returns A dict of methods marked as additional features. Method can be called with
get_extra_functions()["methodName"]().

Return type Dict[str, Callable]
process_message(message)

Process a message with middleware
Parameters message (Message) – Message object to process
Returns Processed message or None if discarded.
Return type Optional[Message]

process_status(status)
Process a status update with middleware

Parameters status (Status) – Message object to process
Returns Processed status or None if discarded.
Return type Optional[Status]

10.7.1 About Middleware ID

With the introduction of instance IDs, it is required to use the self.middleware_id or equivalent instead of any
hard-coded ID or constants while referring to the middleware ID (e.g. while retrieving the path to the configuration files,
etc).

10.7.2 Accept commands from user through Master Channel

Despite we do not limit how the User interact with your middleware, there are 2 common ways to do it through a master
channel.

Capture messages

If the action is chat-specific, you can capture messages with a specific pattern. Try to make the pattern easy to type but
unique enough so that you don’t accidentally catch messages that were meant to sent to the chat.
You may also construct a virtual chat or chat member of type “System” to give responses to the User.

64 Chapter 10. API documentations

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

“Additional features”

If the action is not specific to any chat, but to the system as a whole, we have provided the same command line-like
interface as in slave channels to middlewares as well. Details are available at Additional features.

10.7.3 Chat-specific interactions

Middlewares can have chat-specific interactions through capturing messages and reply to themwith a chat member created
by the middleware.
The following code is an example of a middleware that interact with the user by capturing messages.
When the master channel sends a message with a text starts with time`, the middleware captures this message and
reply with the name of the chat and current time on the server. The message captured is not delivered to any following
middlewares or the slave channel.

def process_message(self: Middleware, message: Message) -> Optional[Message]:
if message.deliver_to != coordinator.master and \ # sent from master channel

text.startswith('time`'):

Make a system chat object.
For difference between `make_system_member()` and `add_system_member()`,
see their descriptions above.
author = message.chat.make_system_member(

uid="__middleware_example_time_reporter__",
name="Time reporter",
middleware=self

)

Make a reply message
reply = Message(

uid=f"__middleware_example_{uuid.uuid4()}__",
text=f"Greetings from chat {message.chat.name} on {datetime.now().

↪strftime('%c')}.",
chat=chat,
author=author, # Using the new chat we created before
type=MsgType.Text,
target=message, # Quoting the incoming message
deliver_to=coordinator.master # message is to be delivered to master

)
Send the message back to master channel
coordinator.send_message(reply)

Capture the message to prevent it from being delivered to following␣
↪middlewares

and the slave channel.
return None

Continue to deliver messages not matching the pattern above.
return message

10.7. Middleware 65

EH Forwarder Bot Documentation, Release 2.1.1

10.8 Status

class ehforwarderbot.status.Status
Abstract class of a status
destination_channel

The channel that this status is sent to, usually the master channel.
Type Channel

class ehforwarderbot.status.ChatUpdates(channel, new_chats=(), removed_chats=(),
modified_chats=())

Inform the master channel on updates of slave chats.
channel

Slave channel that issues the update
Type SlaveChannel

new_chats
Unique ID of new chats

Type Optional[Collection[str]]
removed_chats

Unique ID of removed chats
Type Optional[Collection[str]]

modified_chats
Unique ID of modified chats

Type Optional[Collection[str]]
__init__(channel, new_chats=(), removed_chats=(), modified_chats=())

Parameters
• channel (SlaveChannel) – Slave channel that issues the update
• new_chats (Optional[Collection[str]]) – Unique ID of new chats
• removed_chats (Optional[Collection[str]]) – Unique ID of removed chats
• modified_chats (Optional[Collection[str]]) – Unique ID of modified
chats

class ehforwarderbot.status.MemberUpdates(channel, chat_id, new_members=(),
removed_members=(), modified_members=())

Inform the master channel on updates of members in a slave chat.
channel

Slave channel that issues the update
Type SlaveChannel

chat_id
Unique ID of the chat.

Type str
new_members

Unique ID of new members

66 Chapter 10. API documentations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

Type Optional[Collection[str]]
removed_members

Unique ID of removed members
Type Optional[Collection[str]]

modified_members
Unique ID of modified members

Type Optional[Collection[str]]
__init__(channel, chat_id, new_members=(), removed_members=(), modified_members=())

Parameters
• channel (SlaveChannel) – Slave channel that issues the update
• chat_id (str) – Unique ID of the chat.
• new_members (Optional[Collection[str]]) – Unique ID of new members
• removed_members (Optional[Collection[str]]) – Unique ID of removed
members

• modified_members (Optional[Collection[str]]) – Unique ID of modified
members

class ehforwarderbot.status.MessageReactionsUpdate(chat, msg_id, reactions)
Update reacts of a message, issued from slave channel to master channel.

Parameters
• chat (Chat) – The chat where message is sent
• msg_id (str) – ID of the message for the reacts
• reactions (Mapping[NewType()(ReactionName, str), Collec-
tion[ChatMember]]) – Indicate reactions to the message. Dictionary key represents the
reaction name, usually an emoji. Value is a collection of users who reacted to the message
with that certain emoji. All Chat objects in this dict MUST be members in the chat of the
message.

• destination_channel (MasterChannel) – Channel the status is issued to, which is
always the master channel.

__init__(chat, msg_id, reactions)

Parameters
• chat (Chat) – The chat where message is sent
• msg_id (str) – ID of the message for the reacts
• reactions (Mapping[NewType()(ReactionName, str), Collec-
tion[ChatMember]]) – Indicate reactions to the message. Dictionary key represents the
reaction name, usually an emoji. Value is a collection of users who reacted to the message
with that certain emoji. All Chat objects in this dict MUST be members in the chat of the
message.

class ehforwarderbot.status.MessageRemoval(source_channel, destination_channel, message)
Inform a channel to remove a certain message.

10.8. Status 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Collection
https://docs.python.org/3/library/typing.html#typing.Collection

EH Forwarder Bot Documentation, Release 2.1.1

This is usually known as “delete from everyone”, “delete from recipient”, “recall a message”, “unsend”, or “revoke
a message” as well, depends on the IM platform.
Some channels MAY not support removal of messages, and raises a exceptions.
EFBOperationNotSupported exception.
Feedback by sending another MessageRemoval back is not required when this object is sent from a master
channel. Master channels SHOULD treat a successful delivery of this status as a successful removal.
source_channel

Channel issued the status
Type Channel

destination_channel
Channel the status is issued to

Type Channel

message
Message to remove. This MAY not be a complete message.Message object.

Type Message

Raises .exceptions.EFBOperationNotSupported – When message removal is not sup-
ported in the channel.

__init__(source_channel, destination_channel, message)
Create a message removal status
Try to provided as much as you can, if not, provide a minimum information in the channel:
• Slave channel ID and chat ID (message.chat.module_id and message.chat.uid)
• Message unique ID from the slave channel (message.uid)

Parameters
• source_channel (Channel) – Channel issued the status
• destination_channel (Channel) – Channel the status is issued to
• message (Message) – Message to remove.

class ehforwarderbot.status.ReactToMessage(chat, msg_id, reaction)
Created when user react to a message, issued from master channel.
When this status is sent, a status.MessageReactionsUpdate is RECOMMENDED to be issued back to
master channel.

Parameters
• chat (Chat) – The chat where message is sent
• msg_id (str) – ID of the message to react to
• reaction (Optional[str]) – The reaction name to be sent, usually an emoji. Set to
None to remove reaction.

• destination_channel (SlaveChannel) – Channel the status is issued to, extracted
from the chat object.

Raises

68 Chapter 10. API documentations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

• .exceptions.EFBMessageReactionNotPossible – Raised when the reaction is
not valid (e.g. the specific reaction is not in the list of possible reactions).

• .exceptions.EFBOperationNotSupported – Raised when reaction in any form is
not supported to the message at all.

__init__(chat, msg_id, reaction)

Parameters
• chat (Chat) – The chat where message is sent
• msg_id (str) – ID of the message to react to
• reaction (Optional[NewType()(ReactionName, str)]) – The reaction name to
be sent, usually an emoji

10.9 Custom Type Hints

A list of type aliases when no separate class is defined for some types of values. Types for user-facing values (display
names, descriptions, message text, etc.) are not otherwise defined.
Most of types listed here are defined under the “NewType” syntax in order to clarify some ambiguous values not covered
by simple type checking. This is only useful if you are using static type checking in your development. If you are not
using type checking of any kind, you can simply ignore values in this module.
ehforwarderbot.types.ChatID

Chat ID from slave channel or middleware, applicable to both chat and chat members.
alias of str

ehforwarderbot.types.ExtraCommandName
Command name of additional features, in the format of ^[A-Za-z][A-Za-z0-9_]{0,19}$.
alias of str

ehforwarderbot.types.InstanceID
Instance ID of a module.
alias of str

ehforwarderbot.types.MessageID
Message ID from slave channel or middleware.
alias of str

ehforwarderbot.types.ModuleID
Module ID, including instance ID after # if available.
alias of str

ehforwarderbot.types.ReactionName
Canonical representation of a reaction, usually an emoji.
alias of str

ehforwarderbot.types.Reactions
Reactions to a message.
alias of Mapping[ReactionName, Collection[ChatMember]]

10.9. Custom Type Hints 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Collection

EH Forwarder Bot Documentation, Release 2.1.1

10.10 Utilities

ehforwarderbot.utils.extra(name, desc)
Decorator for slave channel’s “additional features” interface.

Parameters
• name (str) – A human readable name for the function.
• desc (str) – A short description and usage of it. Use {function_name} in place of the
function name in the description.

Return type Callable[..., Optional[str]]
Returns The decorated method.

Example

@extra(name="Echo", desc="Return the text entered.\n\nUsage:\n {function_name}␣
↪text")

def echo(self, text: str) -> Optional[str]:
return text

ehforwarderbot.utils.get_base_path()
Get the base data path for EFB. This can be defined by the environment variable EFB_DATA_PATH.
If EFB_DATA_PATH is not defined, this gives ~/.ehforwarderbot.
This method creates the queried path if not existing.

Return type Path

Returns The base path.
ehforwarderbot.utils.get_config_path(module_id=None, ext='yaml')

Get path for configuration file. Defaulted to ~/.ehforwarderbot/profiles/profile_name/
module_id/config.yaml.
This method creates the queried path if not existing. The config file will not be created, however.

Parameters
• module_id (Optional[NewType()(ModuleID, str)]) – Module ID.
• ext (str) – Extension name of the config file. Defaulted to "yaml".

Return type Path

Returns The path to the configuration file.
ehforwarderbot.utils.get_custom_modules_path()

Get the path to custom channels
Return type Path

Returns The path for custom channels.
ehforwarderbot.utils.get_data_path(module_id)

Get the path for permanent storage of a module.
This method creates the queried path if not existing.

Parameters module_id (NewType()(ModuleID, str)) – Module ID

70 Chapter 10. API documentations

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

Return type Path

Returns The data path of indicated module.
ehforwarderbot.utils.locate_module(module_id, module_type=None)

Locate module by module ID
Parameters

• module_id (NewType()(ModuleID, str)) – Module ID
• module_type (Optional[str]) – Type of module, one of 'master', 'slave' and
'middleware'

10.10. Utilities 71

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

EH Forwarder Bot Documentation, Release 2.1.1

72 Chapter 10. API documentations

CHAPTER11

Indices and tables

• genindex
• modindex
• search

73

EH Forwarder Bot Documentation, Release 2.1.1

74 Chapter 11. Indices and tables

CHAPTER12

Feel like contributing?

Everyone is welcomed to raise an issue or submit a pull request, just remember to read through and follow the contribution
guideline before you do so.

75

EH Forwarder Bot Documentation, Release 2.1.1

76 Chapter 12. Feel like contributing?

CHAPTER13

Related articles

• Idea: Group Chat Tunneling (Sync) with EH Forwarder Bot
• What’s so new in EH Forwarder Bot 2 (and its modules)

For tips, tricks and community contributed articles, see project wiki.

77

https://blog.1a23.com/2017/01/28/Idea-Group-Chat-Tunneling-Sync-with-EH-Forwarder-Bot/
https://blog.1a23.com/2018/02/28/What%E2%80%99s-so-new-in-EH-Forwarder-Bot-2-and-its-modules/
https://efb.1a23.studio/wiki

EH Forwarder Bot Documentation, Release 2.1.1

78 Chapter 13. Related articles

CHAPTER14

License

EFB framework is licensed under GNU Affero General Public License 3.0 or later versions.

EH Forwarder Bot: An extensible message tunneling chat bot framework.
Copyright (C) 2016 - 2020 Eana Hufwe, and the EH Forwarder Bot contributors
All rights reserved.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Donate.

79

https://www.gnu.org/licenses/agpl-3.0.txt

EH Forwarder Bot Documentation, Release 2.1.1

80 Chapter 14. License

Python Module Index

e
ehforwarderbot.channel, 37
ehforwarderbot.chat, 42
ehforwarderbot.constants, 52
ehforwarderbot.coordinator, 53
ehforwarderbot.exceptions, 54
ehforwarderbot.message, 57
ehforwarderbot.status, 66
ehforwarderbot.types, 69
ehforwarderbot.utils, 70

81

EH Forwarder Bot Documentation, Release 2.1.1

82 Python Module Index

Index

Symbols
__init__() (ehforwarderbot.Middleware method), 64
__init__() (ehforwarderbot.channel.Channel method),

37
__init__() (ehforwarderbot.chat.BaseChat method),

43
__init__() (ehforwarderbot.chat.Chat method), 45
__init__() (ehforwarderbot.chat.ChatMember

method), 48
__init__() (ehforwarderbot.chat.SelfChatMember

method), 50
__init__() (ehforwarderbot.chat.SystemChatMember

method), 51
__init__() (ehforwarderbot.message.LinkAttribute

method), 58
__init__() (ehforwarderbot.message.LocationAttribute

method), 58
__init__() (ehforwarder-

bot.message.MessageCommand method), 59
__init__() (ehforwarder-

bot.message.MessageCommands method),
59

__init__() (ehforwarderbot.message.StatusAttribute
method), 60

__init__() (ehforwarderbot.status.ChatUpdates
method), 66

__init__() (ehforwarderbot.status.MemberUpdates
method), 67

__init__() (ehforwarder-
bot.status.MessageReactionsUpdate method),
67

__init__() (ehforwarderbot.status.MessageRemoval
method), 68

__init__() (ehforwarderbot.status.ReactToMessage
method), 69

A
add_channel() (in module ehforwarder-

bot.coordinator), 53

add_member() (ehforwarderbot.chat.Chat method), 45
add_middleware() (in module ehforwarder-

bot.coordinator), 53
add_self() (ehforwarderbot.chat.Chat method), 46
add_system_member() (ehforwarderbot.chat.Chat

method), 46
alias (ehforwarderbot.chat.BaseChat attribute), 42
alias (ehforwarderbot.chat.Chat attribute), 44
ALL (ehforwarderbot.chat.ChatNotificationState attribute),

48
Animation (ehforwarderbot.constants.MsgType at-

tribute), 52
args (ehforwarderbot.message.MessageCommand at-

tribute), 59
Audio (ehforwarderbot.constants.MsgType attribute), 52

B
BaseChat (class in ehforwarderbot.chat), 42

C
callable_name (ehforwarder-

bot.message.MessageCommand attribute),
58

Channel (class in ehforwarderbot.channel), 37
channel (ehforwarderbot.status.ChatUpdates attribute),

66
channel (ehforwarderbot.status.MemberUpdates at-

tribute), 66
channel_emoji (ehforwarderbot.channel.Channel at-

tribute), 37
channel_emoji (ehforwarderbot.chat.BaseChat

attribute), 42
channel_emoji (ehforwarderbot.chat.Chat attribute),

44
channel_id (ehforwarderbot.channel.Channel at-

tribute), 37
channel_name (ehforwarderbot.channel.Channel

attribute), 37
chat, 19

83

EH Forwarder Bot Documentation, Release 2.1.1

Chat (class in ehforwarderbot.chat), 43
chat member, 19
chat_id (ehforwarderbot.status.MemberUpdates at-

tribute), 66
ChatID (in module ehforwarderbot.types), 69
ChatMember (class in ehforwarderbot.chat), 47
ChatNotificationState (class in ehforwarder-

bot.chat), 48
ChatUpdates (class in ehforwarderbot.status), 66
commands (ehforwarderbot.message.MessageCommands

attribute), 59
coordinator, 18
copy() (ehforwarderbot.chat.BaseChat method), 43

D
description (ehforwarderbot.chat.BaseChat attribute),

42
description (ehforwarderbot.chat.Chat attribute), 44
description (ehforwarderbot.message.LinkAttribute

attribute), 57
destination_channel (ehforwarder-

bot.status.MessageRemoval attribute), 68
destination_channel (ehforwarderbot.status.Status

attribute), 66
display_name (ehforwarderbot.chat.BaseChat prop-

erty), 43

E
EFBChannelNotFound, 54
EFBChatNotFound, 54
EFBException, 54
EFBMessageError, 54
EFBMessageNotFound, 54
EFBMessageReactionNotPossible, 55
EFBMessageTypeNotSupported, 55
EFBOperationNotSupported, 55
ehforwarderbot.channel

module, 37
ehforwarderbot.chat

module, 42
ehforwarderbot.constants

module, 52
ehforwarderbot.coordinator

module, 53
ehforwarderbot.exceptions

module, 54
ehforwarderbot.message

module, 57
ehforwarderbot.status

module, 66
ehforwarderbot.types

module, 69
ehforwarderbot.utils

module, 70

extra() (in module ehforwarderbot.utils), 70
ExtraCommandName (in module ehforwarderbot.types),

69

F
File (ehforwarderbot.constants.MsgType attribute), 52

G
get_base_path() (in module ehforwarderbot.utils),

70
get_chat() (ehforwarderbot.channel.SlaveChannel

method), 39
get_chat_picture() (ehforwarder-

bot.channel.SlaveChannel method), 39
get_chats() (ehforwarderbot.channel.SlaveChannel

method), 40
get_config_path() (in module ehforwarder-

bot.utils), 70
get_custom_modules_path() (in module ehfor-

warderbot.utils), 70
get_data_path() (in module ehforwarderbot.utils),

70
get_extra_functions() (ehforwarder-

bot.channel.SlaveChannel method), 40
get_extra_functions() (ehforwarder-

bot.Middleware method), 64
get_member() (ehforwarderbot.chat.Chat method), 47
get_message_by_id() (ehforwarder-

bot.channel.Channel method), 38
get_module_by_id() (in module ehforwarder-

bot.coordinator), 53
group chat, 19
GroupChat (class in ehforwarderbot.chat), 48

H
has_self (ehforwarderbot.chat.Chat property), 47

I
Image (ehforwarderbot.constants.MsgType attribute), 52
image (ehforwarderbot.message.LinkAttribute attribute),

58
instance_id (ehforwarderbot.channel.Channel at-

tribute), 37
instance_id (ehforwarderbot.Middleware attribute),

63
InstanceID (in module ehforwarderbot.types), 69
is_mentioned (ehforwarderbot.message.Substitutions

property), 60

K
kwargs (ehforwarderbot.message.MessageCommand at-

tribute), 59

84 Index

EH Forwarder Bot Documentation, Release 2.1.1

L
latitude (ehforwarderbot.message.LocationAttribute at-

tribute), 58
Link (ehforwarderbot.constants.MsgType attribute), 52
link (ehforwarderbot.message.Message property), 57
LinkAttribute (class in ehforwarderbot.message), 57
locate_module() (in module ehforwarderbot.utils),

71
Location (ehforwarderbot.constants.MsgType attribute),

52
location (ehforwarderbot.message.Message property),

57
LocationAttribute (class in ehforwarder-

bot.message), 58
long_name (ehforwarderbot.chat.BaseChat property), 43
longitude (ehforwarderbot.message.LocationAttribute

attribute), 58

M
make_system_member() (ehforwarderbot.chat.Chat

method), 47
master (in module ehforwarderbot.coordinator), 53
master channel, 18
master_thread (in module ehforwarder-

bot.coordinator), 53
MasterChannel (class in ehforwarderbot.channel), 39
members (ehforwarderbot.chat.Chat attribute), 45
MemberUpdates (class in ehforwarderbot.status), 66
MENTIONS (ehforwarderbot.chat.ChatNotificationState at-

tribute), 48
message, 19
Message (class in ehforwarderbot.message), 55
message (ehforwarderbot.status.MessageRemoval at-

tribute), 68
MessageAttribute (class in ehforwarderbot.message),

57
MessageCommand (class in ehforwarderbot.message), 58
MessageCommands (class in ehforwarderbot.message),

59
MessageID (in module ehforwarderbot.types), 69
MessageReactionsUpdate (class in ehforwarder-

bot.status), 67
MessageRemoval (class in ehforwarderbot.status), 67
middleware, 18
Middleware (class in ehforwarderbot), 63
middleware_id (ehforwarderbot.Middleware at-

tribute), 63
middleware_name (ehforwarderbot.Middleware

attribute), 63
middlewares (in module ehforwarderbot.coordinator),

53
modified_chats (ehforwarderbot.status.ChatUpdates

attribute), 66

modified_members (ehforwarder-
bot.status.MemberUpdates attribute), 67

module, 19
ehforwarderbot.channel, 37
ehforwarderbot.chat, 42
ehforwarderbot.constants, 52
ehforwarderbot.coordinator, 53
ehforwarderbot.exceptions, 54
ehforwarderbot.message, 57
ehforwarderbot.status, 66
ehforwarderbot.types, 69
ehforwarderbot.utils, 70

module_id (ehforwarderbot.chat.BaseChat attribute), 42
module_id (ehforwarderbot.chat.Chat attribute), 44
module_name (ehforwarderbot.chat.BaseChat attribute),

42
module_name (ehforwarderbot.chat.Chat attribute), 44
ModuleID (in module ehforwarderbot.types), 69
MsgType (class in ehforwarderbot.constants), 52
mutex (in module ehforwarderbot.coordinator), 53

N
name (ehforwarderbot.chat.BaseChat attribute), 42
name (ehforwarderbot.chat.Chat attribute), 44
name (ehforwarderbot.message.MessageCommand at-

tribute), 58
new_chats (ehforwarderbot.status.ChatUpdates at-

tribute), 66
new_members (ehforwarderbot.status.MemberUpdates

attribute), 66
NONE (ehforwarderbot.chat.ChatNotificationState at-

tribute), 48
notification (ehforwarderbot.chat.Chat attribute), 45

P
poll() (ehforwarderbot.channel.Channel method), 38
private chat, 19
PrivateChat (class in ehforwarderbot.chat), 49
process_message() (ehforwarderbot.Middleware

method), 64
process_status() (ehforwarderbot.Middleware

method), 64
profile (in module ehforwarderbot.coordinator), 53

R
ReactionName (in module ehforwarderbot.types), 69
Reactions (in module ehforwarderbot.types), 69
ReactToMessage (class in ehforwarderbot.status), 68
removed_chats (ehforwarderbot.status.ChatUpdates

attribute), 66
removed_members (ehforwarder-

bot.status.MemberUpdates attribute), 67
RFC

RFC 2119, 21, 37

Index 85

EH Forwarder Bot Documentation, Release 2.1.1

RFC 8174, 21, 37

S
self (ehforwarderbot.chat.Chat attribute), 45, 47
SELF_ID (ehforwarderbot.chat.SelfChatMember at-

tribute), 50
SelfChatMember (class in ehforwarderbot.chat), 49
send_message() (ehforwarderbot.channel.Channel

method), 38
send_message() (in module ehforwarder-

bot.coordinator), 54
send_status() (ehforwarderbot.channel.Channel

method), 38
send_status() (in module ehforwarder-

bot.coordinator), 54
slave channel, 18
slave_threads (in module ehforwarder-

bot.coordinator), 54
SlaveChannel (class in ehforwarderbot.channel), 39
slaves (in module ehforwarderbot.coordinator), 53, 54
source_channel (ehforwarder-

bot.status.MessageRemoval attribute), 68
status, 19
Status (class in ehforwarderbot.status), 66
Status (ehforwarderbot.constants.MsgType attribute), 52
status (ehforwarderbot.message.Message property), 57
status_type (ehforwarderbot.message.StatusAttribute

attribute), 59
StatusAttribute (class in ehforwarderbot.message),

59
StatusAttribute.Types (class in ehforwarder-

bot.message), 59
Sticker (ehforwarderbot.constants.MsgType attribute),

52
stop_polling() (ehforwarderbot.channel.Channel

method), 39
Substitutions (class in ehforwarderbot.message), 60
suggested_reactions (ehforwarder-

bot.channel.SlaveChannel attribute), 39
supported_message_types (ehforwarder-

bot.channel.SlaveChannel attribute), 39
system chat, 19
SYSTEM_ID (ehforwarderbot.chat.SystemChatMember at-

tribute), 51
SystemChat (class in ehforwarderbot.chat), 50
SystemChatMember (class in ehforwarderbot.chat), 51

T
Text (ehforwarderbot.constants.MsgType attribute), 52
the User, 19
the User Themself, 19
timeout (ehforwarderbot.message.StatusAttribute at-

tribute), 59

title (ehforwarderbot.message.LinkAttribute attribute),
57

translator (in module ehforwarderbot.coordinator), 54
Types (ehforwarderbot.message.StatusAttribute attribute),

59
TYPING (ehforwarderbot.message.StatusAttribute.Types

attribute), 59

U
uid (ehforwarderbot.chat.BaseChat attribute), 42
uid (ehforwarderbot.chat.Chat attribute), 44
Unsupported (ehforwarderbot.constants.MsgType at-

tribute), 52
UPLOADING_FILE (ehforwarder-

bot.message.StatusAttribute.Types attribute),
60

UPLOADING_IMAGE (ehforwarder-
bot.message.StatusAttribute.Types attribute),
60

UPLOADING_VIDEO (ehforwarder-
bot.message.StatusAttribute.Types attribute),
60

UPLOADING_VOICE (ehforwarder-
bot.message.StatusAttribute.Types attribute),
60

url (ehforwarderbot.message.LinkAttribute attribute), 58

V
vendor_specific (ehforwarderbot.chat.BaseChat at-

tribute), 43
vendor_specific (ehforwarderbot.chat.Chat at-

tribute), 45
verify() (ehforwarderbot.chat.BaseChat method), 43
verify() (ehforwarderbot.chat.ChatMember method),

48
verify() (ehforwarderbot.chat.GroupChat method), 49
verify() (ehforwarderbot.chat.PrivateChat method), 49
verify() (ehforwarderbot.chat.SystemChat method), 51
verify() (ehforwarderbot.message.Message method), 57
Video (ehforwarderbot.constants.MsgType attribute), 52
Voice (ehforwarderbot.constants.MsgType attribute), 52

86 Index

	Getting started
	Install EH Forwarder Bot
	Install from PyPI
	Install from GitHub
	Alternative installation methods

	A stable internet connection
	Create local directories
	Choose, install and enable modules
	Set up with the configuration wizard
	Set up manually

	Launch EFB
	Use EFB in another language
	Launch EFB as a daemon process

	Configuration File
	Syntax
	Instance ID
	Granulated logging control

	Launch the framework
	Options
	Quitting EFB

	Directories
	Directory structure

	Profiles
	Start a new profile

	Support
	Bug reports and feature requests
	Questions about development and usage

	Walk-through — How EFB works
	Concepts to know
	Slave Channels
	Master Channels
	Middlewares

	Development guide
	Slave channels
	Additional features
	Message commands
	Message delivery
	Implementation details

	Master channels
	Design guideline
	Message delivery
	Implementation details

	Middlewares
	Message and Status Processing
	Other Usages
	Implementation details

	Lifecycle
	Lifecycle of an EFB instance
	Lifecycle of a message

	Media processing
	Choosing media formats
	Media encoders
	Files in messages

	Configurations and storage
	Configurations and Permanent Storage
	Temporary Storage
	Wizard
	Example

	Packaging and Publish
	Publish your module on PyPI
	Module discovery
	Example
	Private modules

	Miscellaneous
	Logging
	Vendor-specifics
	Threading
	Static type checking

	How to contribute
	Reporting bugs
	Before submitting a bug report
	How Do I Submit A (Good) Bug Report?

	Suggesting enhancements
	Pull requests

	API documentations
	Channel
	Common operations
	Sending messages and statuses

	About Channel ID

	Chat and Chat Members
	Constants
	Coordinator
	Exceptions
	Message
	Examples
	Prelude: Defining related chats
	Initialization and marking chats
	Quoting a previous message (targeted message)
	Edit a previously sent message
	Type-specific Information
	Additional information

	Middleware
	About Middleware ID
	Accept commands from user through Master Channel
	Capture messages
	“Additional features”

	Chat-specific interactions

	Status
	Custom Type Hints
	Utilities

	Indices and tables
	Feel like contributing?
	Related articles
	License
	Python Module Index
	Index

