

EH Forwarder Bot

	Versions

	[image: Python >= 3.6]
 [https://www.python.org/][image: PyPI release]
 [https://pypi.org/project/ehforwarderbot/]

	Build

	[image: Documentation]
 [https://ehforwarderbot.readthedocs.io/en/latest/][image: Tests status]
 [https://github.com/ehForwarderBot/ehforwarderbot/actions]

	Community

	[image: GitHub Discussions]
 [https://github.com/ehForwarderBot/ehForwarderBot/discussions][image: Telegram]
 [https://telegram.me/efbsupport]

	Stats

	[image: Downloads per month]
 [https://pepy.tech/project/ehforwarderbot][image: Codacy grade]
 [https://www.codacy.com/app/blueset/ehForwarderBot][image: Translate this project]
 [https://crowdin.com/project/ehforwarderbot/]

[image: Banner]
Codename EH Forwarder Bot (EFB) is an extensible message tunneling chat
bot framework which delivers messages to and from multiple platforms and
remotely control your accounts.

	Getting started

	Configuration File

	Launch the framework

	Directories

	Profiles

	Support

	Walk-through — How EFB works

	Development guide

	How to contribute

	API documentations

Indices and tables

	Index

	Module Index

	Search Page

Feel like contributing?

Everyone is welcomed to raise an issue or submit a pull request,
just remember to read through and follow the
contribution guideline before you do so.

Related articles

	Idea: Group Chat Tunneling (Sync) with EH Forwarder Bot [https://blog.1a23.com/2017/01/28/Idea-Group-Chat-Tunneling-Sync-with-EH-Forwarder-Bot/]

	What’s so new in EH Forwarder Bot 2 (and its modules) [https://blog.1a23.com/2018/02/28/What%E2%80%99s-so-new-in-EH-Forwarder-Bot-2-and-its-modules/]

For tips, tricks and community contributed articles, see project wiki [https://efb.1a23.studio/wiki].

License

EFB framework is licensed under GNU Affero General Public License 3.0 [https://www.gnu.org/licenses/agpl-3.0.txt]
or later versions.

EH Forwarder Bot: An extensible message tunneling chat bot framework.
Copyright (C) 2016 - 2020 Eana Hufwe, and the EH Forwarder Bot contributors
All rights reserved.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as
published by the Free Software Foundation, either version 3 of the
License, or any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Donate.

 Getting started

Getting started

A few simple steps to get started with EFB.

Install EH Forwarder Bot

EH Forwarder Bot can be installed in the following ways:

Install from PyPI

pip will by default install the latest stable version
from PyPI, but development versions are available at PyPI
as well.

pip3 install ehforwarderbot

Install from GitHub

This will install the latest commit from GitHub. It might not be
stable, so proceed with caution.

pip3 install git+https://github.com/ehForwarderBot/ehforwarderbot.git

Alternative installation methods

You can find a list of alternative installation methods contributed
by the community in the project wiki [https://efb.1a23.studio/wiki/Alternative-installation-methods].

For scripts, containers (e.g. Docker), etc. that may include one or
more external modules, please visit the modules repository [https://efb-modules.1a23.studio].

Note

These alternative installation methods are maintained by the
community, please consult their respective author or maintainer
for help related to those methods.

A stable internet connection

Since the majority of our channels are using polling for message retrieval,
a stable internet connection is necessary for channels to run smoothly.
An unstable connection may lead to slow response, or loss of messages.

Create local directories

EFB uses a *nix user configuration style, which is described in
details in Directories. In short, if you are using the
default configuration, you need to create ~/.ehforwarderbot,
and give read and write permission to the user running EFB.

Choose, install and enable modules

Currently, all modules that was submitted to us are recorded in
the modules repository [https://efb-modules.1a23.studio].
You can choose the channels that fits your need the best.

Instructions about installing each channel is available at
their respective documentations.

Set up with the configuration wizard

When you have successfully installed the modules of your choices, you can
the use the configuration wizard which guides you to enable channels and
middlewares, and continue to setup those modules if they also have provided a
similar wizard.

You can start the wizard by running the following command in a compatible
console or terminal emulator:

efb-wizard

If you want to start the wizard of a module for a profile individually, run:

efb-wizard -p <profile name> -m <module ID>

Set up manually

Alternatively, you can enable those modules manually
it by listing its Channel ID in the configuration file.
The default path is ~/.ehforwarderbot/profiles/default/config.yaml.
Please refer to Directories if you have configured otherwise.

Please note that although you can have more than one slaves channels
running at the same time, you can only have exactly one master channels
running in one profile. Meanwhile, middlewares are completely optional.

For example, to enable the following modules:

	
	Master channel
	
	Demo Master (foo.demo_master)

	
	Slave channels
	
	Demo Slave (foo.demo_slave)

	Dummy Slave (bar.dummy)

	
	Middlewares
	
	Null Middleware (foo.null)

config.yaml should have the following lines:

master_channel: foo.demo_master
slave_channels:
- foo.demo_slave
- bar.dummy
middlewares:
- foo.null

If you have enabled modules manually, you might also need configure each
module manually too. Please consult the documentation of each module for
instructions.

Launch EFB

ehforwarderbot

This will launch EFB directly in the current environment. The default
Profiles is named default, to launch EFB in a different
profile, append --profile <profile-name> to the command.

For more command line options, use --help option.

Use EFB in another language

EFB supports translated user interface and prompts.
You can set your system language or locale environmental variables
(LANGUAGE, LC_ALL, LC_MESSAGES or LANG) to one of our
supported languages [https://crowdin.com/project/ehforwarderbot/] to switch language.

You can help to translate this project into your languages on
our Crowdin page [https://crowdin.com/project/ehforwarderbot/].

Note

If your are installing from source code, you will not get translations
of the user interface without manual compile of message catalogs (.mo)
prior to installation.

Launch EFB as a daemon process

Since version 2, EH Forwarder Bot has removed the daemon helper as
it is unstable to use. We recommend you to use mature solutions for
daemon management, such as systemd [https://www.freedesktop.org/wiki/Software/systemd/], upstart [http://upstart.ubuntu.com/], or pm2 [http://pm2.keymetrics.io/].

 Configuration File

Configuration File

EFB has an overall configuration file to manage all enabled modules.
It is located under the directory of current
profile, and named config.yaml.

Syntax

The configuration file is in the YAML syntax. If you are not familiar
with its syntax, please check its documentations and tutorials for
details.

	The ID of the master channel enabled is under the key master_channel

	The ID of slave channels enabled is listed under the key
slave_channels. It has to be a list even if just one channel is
to be enabled.

	The ID of middlewares enabled are listed under the key middlewares.
It has to be a list even if just one middleware is to be enabled.
However, if you don’t want to enable any middleware, just omit the section
completely.

Instance ID

To have multiple accounts running simultaneously, you can appoint an instance
ID to a module. Instance ID can be defined by the user, and if defined,
it must has nothing other than letters, numbers and underscores, i.e. in
regular expressions [a-zA-Z0-9_]+. When instance ID is not defined,
the channel will run in the “default” instance with no instance ID.

To indicate the instance ID of an instance, append # following by the
instance ID to the module ID. For example, slave channel bar.dummy
running with instance ID alice should be written as bar.dummy#alice.
If the channel requires configurations, it should be done in the directory
with the same name (e.g. EFB_DATA_PATH/profiles/PROFILE/bar.dummy#alice),
so as to isolate instances.

Please avoid having two modules with the same set of module ID and instance ID
as it may leads to unexpected results.

For example, to enable the following modules:

	
	Master channel
	
	Demo Master (foo.demo_master)

	
	Slave channels
	
	Demo Slave (foo.demo_slave)

	Dummy Slave (bar.dummy)

	Dummy Slave (bar.dummy) at alt instance

	
	Middlewares
	
	Message Archiver (foo.msg_archiver)

	Null Middleware (foo.null)

config.yaml should have the following lines:

master_channel: foo.demo_master
slave_channels:
- foo.demo_slave
- bar.dummy
- bar.dummy#alt
middlewares:
- foo.msg_archiver
- foo.null

Granulated logging control

If you have special needs on processing and controlling the log produced
by the framework and running modules, you can use specify the log
configuration with Python’s configuration dictionary schema [https://docs.python.org/3.7/library/logging.config.html#logging-config-dictschema] under
section logging.

An example of logging control settings:

logging:
 version: 1
 disable_existing_loggers: false
 formatters:
 standard:
 format: '%(asctime)s [%(levelname)s] %(name)s: %(message)s'
 handlers:
 default:
 level: INFO
 formatter: standard
 class: logging.StreamHandler
 stream: ext://sys.stdout
 loggers:
 '':
 handlers: [default,]
 level: INFO
 propagate: true
 AliceIRCChannel:
 handlers: [default,]
 level: WARN
 propagate: false

 Launch the framework

Launch the framework

EH Forwarder Bot offered 2 ways to launch the framework:

	ehforwarderbot

	python3 -m ehforwarderbot

Both commands are exactly the same thing, accept the
same flags, run the same code. The latter is only a backup
in case the former does not work.

Options

	-h, --help: Show help message

	-p PROFILE, --profile PROFILE: Switch profile

From version 2, EFB supports running different instances
under the same user, identified by their profiles.
The default profile is named default.

	-V, --version: Print version information

This shows version number of Python you are using,
the EFB framework, and all channels and middlewares
enabled.

	-v, --verbose: Print verbose log

This option enables verbose log of EFB and all enabled
modules. This, together with --version, is particularly
useful in debugging and issue reporting.

	--trace-threads: Trace hanging threads

This option is useful to identify source of the issue
when you encounter situations where you had to force quit
EFB. When this option is enabled, once the first stop signal (SIGINT or
SIGTERM) is sent, threads that are asleep will be identified and
reported every 10 seconds, until a second stop signal is seen.

In order to use this option, you need to install extra Python dependencies
using the following command.

pip3 install 'ehforwarderbot[trace]'

Quitting EFB

If you started EFB in a shell, you can simply press Control-c to trigger
the quit process. Otherwise, ask your service manager to issue a SIGTERM
for a graceful exit. The exit process may take a few second to complete.

Important

It is important for you to issue a graceful termination signal (e.g.
SIGTERM), and NOT to use SIGKILL. Otherwise you may face the
risk of losing data and breaking programs.

If you have encountered any issue quitting EFB, press Control-c for 5
times consecutively to trigger a force quit. In case you have frequently
encountered situations where you had to force quit EFB, there might be a bug
with EFB or any modules enabled. You may want to use the --trace-threads
option described above to identify the source of issue, and report this to
relevant developers.

 Directories

Directories

Since EH Forwarder Bot 2.0, most modules should be
installed with the Python Package Manager pip,
while configurations and data are stored in the “EFB
data directory”.

By default, the data directory is user specific, located in
the user’s home directory, ~/.ehforwarderbot. This can be
overridden with the environment variable EFB_DATA_PATH.
This path defined here should be an absolute path.

Directory structure

Using the default configuration as an example, this section
will introduce about the structure of EFB data directory.

./ehforwarderbot or $EFB_DATA_PATH
|- profiles
| |- default The default profile.
| | |- config.yaml Main configuration file.
| | |- dummy_ch_master Directory for data of the channel
| | | |- config.yaml Config file of the channel. (example)
| | | |- ...
| | |- random_ch_slave
| | | |- ...
| |- profile2 Alternative profile
| | |- config.yaml
| | |- ...
| |- ...
|- modules Place for source code of your own channels/middlewares
| |- random_ch_mod_slave Channels here have a higher priority while importing
| | |- __init__.py
| | |- ...

 Profiles

Profiles

Starting from EFB version 2, profiles are introduced
to allow users in need to run multiple EFB instances
simultaneously without affecting each other.

Each profile has its own set of configuration files
a set of channels that share the same code, but
has different data files, so that they can run on
their own.

The default profile name is called default.
To switch to a different profile, specify the
profile name in --profile flag while starting
EFB.

Start a new profile

To create a new profile, you need to create a
directory in the EFB_DATA_PATH/profiles, and
create a new configuration file as described in
chapter Getting started.

When everything is configured properly, you are good
to go.

 Support

Support

Bug reports and feature requests

See contribution guideline for details.

Questions about development and usage

If you have any question about developing a module for EFB, or about usages,
you can always visit our GitHub Discussions [https://github.com/ehForwarderBot/ehForwarderBot/discussions] forum or join our
Telegram Group [https://telegram.me/efbsupport] for help.

 Walk-through — How EFB works

Walk-through — How EFB works

EH Forwarder Bot is an extensible framework that allows
user to control and manage accounts from different chat
platforms in a unified interface. It consists of 4 parts:
a Master Channel, some Slave Channels, some Middlewares
and a Coordinator.

[image: EFB Project Structure]

	master channel
	The channel that directly interact with the User.
It is guaranteed to have one and only one master
channel in an EFB session.

	slave channel
	The channel that delivers messages to and from
their relative platform. There is at lease one
slave channel in an EFB session.

	coordinator
	Component of the framework that maintains the
instances of channels, and delivers messages between
channels.

	middleware
	Module that processes messages and statuses
delivered between channels, and make modifications
where needed.

Concepts to know

	module
	A common term that refers to both channels and
middlewares.

	the User
	the User Themself
	This term 1 can refer to the user of the current instance
of EH Forwarder Bot, operating the master channel, and
the account of an IM platform logged in by a slave
channel.

	chat
	A place where conversations happen, it can be either a
private chat, a group chat, or a
system chat.

	private chat
	A conversation with a single person on the IM platform.
Messages from a private conversation shall only has an
author of the User Themself, the other person, or a
“system member”.

For platforms that support bot or something similar,
they would also be considered as a “user”, unless
messages in such chat can be sent from any user other
than the bot.

For chats that the User receive messages, but cannot
send message to, it should also be considered as a
private chat, only to raise an exception when messages
was trying to send to the chat.

	group chat
	A chat that involves more than two members. A group chat
MUST provide a list of members that is involved in the
conversation.

	system chat
	A chat that is a part of the system. Usually used for
chats that are either a part of the IM platform, the
slave channel, or a middleware.
Slave channels can use this chat type to send
system message and notifications to the master channel.

	chat member
	A participant of a chat. It can be the User Themself,
another person or bot in the chat, or a virtual one
created by the IM platform, the slave channel, or a
middleware.

	message
	Messages are delivered strictly between the master
channel and a slave channel. It usually carries
an information of a certain type.

Each message should at least have a unique ID that is
distinct within the slave channel related to it. Any
edited message should be able to be identified with
the same unique ID.

	status
	Information that is not formatted into a message. Usually
includes updates of chats and members of chats, and
removal of messages.

Slave Channels

The job of slave channels is relatively simple.

	Deliver messages to and from the master channel.

	Maintains a list of all available chats, and group members.

	Monitors changes of chats and notify the master channel.

Features that does not fit into the standard EFB Slave Channel
model can be offered as Additional features.

Master Channels

Master channels is relatively more complicated and also
more flexible. As it directly faces the User, its user
interface should be user-friendly, or at least friendly
to the targeted users.

The job of the master channel includes:

	Receive, process and display messages from slave
channels.

	Display a full list of chats from all slave channels.

	Offer an interface for the User to use “extra functions”
from slave channels.

	Process updates from slave channels.

	Provide a user-friendly interface as far as possible.

Middlewares

Middlewares can monitor and make changes to or nullify
messages and statuses delivered between channels.
Middlewares are executed in order of registration, one
after another. A middleware will always receive the
messages processed by the preceding middleware if
available. Once a middleware nullify a message or status,
the message will not be processed and delivered any
further.

Footnotes

	1

	“Themself” here is used as a derived form of a
gender-neutral singular third-person pronoun.

 Development guide

Development guide

This section includes guides on how to develop
channels and middlewares for EH Forwarder Bot.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”,
“MAY”, and “OPTIONAL” in this document are to be interpreted as
described in BCP 14 [https://tools.ietf.org/html/bcp14] [RFC 2119 [https://tools.ietf.org/html/rfc2119.html]] [RFC 8174 [https://tools.ietf.org/html/rfc8174.html]] when, and only when, they
appear in all capitals, as shown here.

	Walk-through — How EFB works
	Concepts to know

	Slave Channels

	Master Channels

	Middlewares

	Slave channels
	Additional features

	Message commands

	Message delivery

	Implementation details

	Master channels
	Design guideline

	Message delivery

	Implementation details

	Middlewares
	Message and Status Processing

	Other Usages

	Implementation details

	Lifecycle
	Lifecycle of an EFB instance

	Lifecycle of a message

	Media processing
	Choosing media formats

	Media encoders

	Files in messages

	Configurations and storage
	Configurations and Permanent Storage

	Temporary Storage

	Wizard

	Packaging and Publish
	Publish your module on PyPI

	Module discovery

	Example

	Private modules

	Miscellaneous
	Logging

	Vendor-specifics

	Threading

	Static type checking

 Walk-through — How EFB works

Walk-through — How EFB works

EH Forwarder Bot is an extensible framework that allows
user to control and manage accounts from different chat
platforms in a unified interface. It consists of 4 parts:
a Master Channel, some Slave Channels, some Middlewares
and a Coordinator.

[image: EFB Project Structure]

	master channel
	The channel that directly interact with the User.
It is guaranteed to have one and only one master
channel in an EFB session.

	slave channel
	The channel that delivers messages to and from
their relative platform. There is at lease one
slave channel in an EFB session.

	coordinator
	Component of the framework that maintains the
instances of channels, and delivers messages between
channels.

	middleware
	Module that processes messages and statuses
delivered between channels, and make modifications
where needed.

Concepts to know

	module
	A common term that refers to both channels and
middlewares.

	the User
	the User Themself
	This term 1 can refer to the user of the current instance
of EH Forwarder Bot, operating the master channel, and
the account of an IM platform logged in by a slave
channel.

	chat
	A place where conversations happen, it can be either a
private chat, a group chat, or a
system chat.

	private chat
	A conversation with a single person on the IM platform.
Messages from a private conversation shall only has an
author of the User Themself, the other person, or a
“system member”.

For platforms that support bot or something similar,
they would also be considered as a “user”, unless
messages in such chat can be sent from any user other
than the bot.

For chats that the User receive messages, but cannot
send message to, it should also be considered as a
private chat, only to raise an exception when messages
was trying to send to the chat.

	group chat
	A chat that involves more than two members. A group chat
MUST provide a list of members that is involved in the
conversation.

	system chat
	A chat that is a part of the system. Usually used for
chats that are either a part of the IM platform, the
slave channel, or a middleware.
Slave channels can use this chat type to send
system message and notifications to the master channel.

	chat member
	A participant of a chat. It can be the User Themself,
another person or bot in the chat, or a virtual one
created by the IM platform, the slave channel, or a
middleware.

	message
	Messages are delivered strictly between the master
channel and a slave channel. It usually carries
an information of a certain type.

Each message should at least have a unique ID that is
distinct within the slave channel related to it. Any
edited message should be able to be identified with
the same unique ID.

	status
	Information that is not formatted into a message. Usually
includes updates of chats and members of chats, and
removal of messages.

Slave Channels

The job of slave channels is relatively simple.

	Deliver messages to and from the master channel.

	Maintains a list of all available chats, and group members.

	Monitors changes of chats and notify the master channel.

Features that does not fit into the standard EFB Slave Channel
model can be offered as Additional features.

Master Channels

Master channels is relatively more complicated and also
more flexible. As it directly faces the User, its user
interface should be user-friendly, or at least friendly
to the targeted users.

The job of the master channel includes:

	Receive, process and display messages from slave
channels.

	Display a full list of chats from all slave channels.

	Offer an interface for the User to use “extra functions”
from slave channels.

	Process updates from slave channels.

	Provide a user-friendly interface as far as possible.

Middlewares

Middlewares can monitor and make changes to or nullify
messages and statuses delivered between channels.
Middlewares are executed in order of registration, one
after another. A middleware will always receive the
messages processed by the preceding middleware if
available. Once a middleware nullify a message or status,
the message will not be processed and delivered any
further.

Footnotes

	1

	“Themself” here is used as a derived form of a
gender-neutral singular third-person pronoun.

 Slave channels

Slave channels

Slave channel is more like a wrap over an API of IM,
it encloses messages from the IM into appropriate
objects and deliver it to the master channel.

Although we suggest that slave channel should match
with an IM platform, but you may try to model it for
anything that can deliver information as messages, and
has a limited list of end-points to deliver messages
to and from as chats.

In most of the cases, slave channels SHOULD be
identified as one single user from the IM platform,
instead of a bot. You should only use a bot for slave
channels when:

	the IM platform puts no difference between a user
and a bot, or

	bots on the IM platform can do exactly same things,
if not more, as a user, and bots can be created
easier than user account.

Additional features

Slave channels can offer more functions than what EFB
requires, such as creating groups, search for friends,
etc, via additional features.

Such features are accessed by the user in a CLI-like
style. An “additional feature” method MUST only take one
string parameter aside from self, and wrap it with
extra() decorator. The extra
decorator takes 2 arguments: name – a short name of the
feature, and desc – a description of the feature with
its usage.

desc SHOULD describe what the feature does and how
to use it. It’s more like the help text for an CLI program.
Since method of invoking the feature depends on the
implementation of the master channel, you SHOULD use
"{function_name}" as its name in desc,
and master channel will replace it with respective name
depend on their implementation.

The method MUST in the end return a string, which will
be shown to the user as its result, or None to notify the master channel
there will be further interaction happen. Depending on the
functionality of the feature, it may be just a simple
success message, or a long chunk of results.

The callable MUST NOT raise any exception to its caller.
Any exceptions occurred within should be expected and
processed.

Callable name of such methods has a more strict standard
than a normal Python 3 identifier name, for compatibility
reason. An additional feature callable name MUST:

	be case sensitive

	include only upper and lower-case letters, digits, and underscore.

	does not start with a digit.

	be in a length between 1 and 20 inclusive

	be as short and concise as possible, but keep understandable

It can be expressed in a regular expression as:

^[A-Za-z][A-Za-z0-9_]{0,19}$

An example is as follows:

@extra(name="Echo",
 desc="Return back the same string from input.\n"
 "Usage:\n"
 " {function_name} text")
def echo(self, arguments: str = "") -> str:
 return arguments

Message commands

Message commands are usually sent by slave channels so that
users can respond to certain messages that has specific
required actions.

Possible cases when message commands could be useful:

	Add as friends when a contact card is received.

	Accept or decline when a friend request is received.

	Vote to a voting message.

A message can be attached with a list of commands, in
which each of them has:

	a human-friendly name,

	a callable name,

	a list of positional arguments (*args), and

	a dict of keyword arguments (**kwargs)

When the User clicked the button, the corresponding method
of your channel will be called with provided arguments.

Note that all such methods MUST return a str as a
respond to the action from user, and they MUST NOT raise
any exception to its caller. Any exceptions occurred within
MUST be expected and processed.

Message delivery

Slave channels SHOULD deliver all messages that the IM
provides, including what the User sent outside of this channel.
But it SHOULD NOT deliver message sent from the master channel
again back to the master channel as a new message.

Implementation details

See SlaveChannel.

 Master channels

Master channels

Master channels are the interface that directly
or indirectly interact with the user. Despite the
first master channel of EFB (EFB Telegram Master)
is written in a form of Telegram Bot, master channels
can be written in many forms, such as:

	A web app

	A server that expose APIs to dedicated desktop and
mobile clients

	A chat bot on an existing IM

	A server that compiles with a generic IM Protocol

	A CLI client

	Anything else you can think of…

Design guideline

When the master channel is implemented on an existing
protocol or platform, as far as possible, while
considering the user experience, a master channel SHOULD:

	maintain one conversation thread per chat, indicating
its name, source channel and type;

	support all, if not most, types of messages defined
in the framework, process and deliver messages
between the user and slave channels;

	support all, if not most, features of messages,
including: targeted message reply, chat substitution
in text (usually used in @ references), commands, etc.
Master channel SHOULD be able to process incoming
messages with such features, and send messages with
such features to slave channels if applicable;

	be able to invoke and process “additional features”
offered by slave channels.

Optionally, a master channel can also support / identify
vendor-specified information from certain slave channels.

[image: ../_images/master-channel-0.png]

An example of an ideal design of a master channel,
inspired by Telegram Desktop

Depends on your implementation, a master channel may
probably needs to maintain a list of chats and messages,
for presentation or other purposes.

Message delivery

Note that sometimes the User may send messages outside of
this EFB session, so that slave channels MAY provide a
message with its author in the “self” type.

Implementation details

See MasterChannel.

 Middlewares

Middlewares

Middlewares works in between the master channel and
slave channels, they look through messages and statuses
delivered between channels, passing them on, make changes
or discarding them, one after another.

Like channels, middlewares will also each have an instance
per EFB session, managed by the coordinator. However, they
don’t have centrally polling threads, which means if a
middleware wants to have a polling thread or something
similar running in the background, it has to stop the thread
using Python’s atexit or otherwise.

Message and Status Processing

Each middleware by default has 2 methods, process_message()
which processes message objects, and process_status()
which processes status objects. If they are not overridden,
they will not touch on the object and pass it on as is.

To modify an object, just override the relative method and
make changes to it. To discard an object, simply return None.
When an object is discarded, it will not be passed further
to other middlewares or channels, which means a middleware
or a channel will never receive a None message or
status.

Other Usages

Having rather few limitation compare to channels, middlewares are
rather easy to write, which allows it to do more than
just intercept messages and statuses.

Some ideas:

	Periodic broadcast to master / slave channels

	Integration with chat bots

	Automated operations on vendor-specific commands /
additional features

	Share user session from slave channel with other
programs

	etc…

Implementation details

See Middleware.

 Lifecycle

Lifecycle

This section talks about the lifecycle of an EFB instance, and that of a message
/ status.

Lifecycle of an EFB instance

The diagram below outlines the lifecycle of an EFB instance, and how channels
and middlewares are involved in it.

[image: @startuml start :User starts an EFB instance; :Load profile configuration; :Import modules enabled; note right Modules are imported in the order specified in the profile config, master channels first, then slave channels and middlewares. end note :Initialize slave channels; note right Slave channels are initialized in the order specified in the profile config. When this is finished, the slave channel SHOULD be ready to response to all requests via method calls (""get_chats()"", ""get_chat_picture()"", etc). Messages from slave channels should be held until ""poll()"" is called. Note that master channel is **not** ready at this moment, interactions with the user through the framework is not possible. Master channel-specific interactions is possible by inspecting configs, but NOT RECOMMENDED, and SHOULD be avoided if an alternative solution is available. end note :Initialize master channel; note right Master channel can load data from slave channels enabled at this time, but not from middlewares. Messages from master channel should be held until ""poll()"" is called. end note :Initialize middlewares; note right Middlewares are initialized in the order specified in the profile config. At this moment, all channels are initialized and available. This is useful when a middleware would have channel-specific behaviors or would monkey-patch code in channels. end note :Poll master channel and slave channels; note right ""poll()"" of each channel is called in a separate Python thread. Messages SHOULD be sent between channels **only after** this method is called. end note :User triggers termination| :Call ""stop_polling()"" of the master channel, and then slave channels; note right When ""stop_polling()"" is called, the channel SHOULD proceed with all clean-up procedures to prepare for its termination. When clean-up is finished, code running in the ""poll"" threads MUST be stopped to allow a graceful exit. end note :Join all ""poll"" threads; note right The framework will wait for all ""poll"" threads to finish their works for a graceful exit. end note stop @enduml]

Lifecycle of an EFB instance

Lifecycle of a message

The diagram below outlines the lifecycle of a message sending from a channel,
going through all middlewares, sent to the destination channel, and returned
back to the sending channel.

[image: @startuml start :Message object is built and sent to the coordinator via ""coordinator.send_message()""; while (//for// each middleware) is (do) :Middleware processes and modify the message; if (Is message ""None""?) then (yes) :Return ""None"" to the sender; stop endif end while (finish) if (Is message valid?) then (yes) else (no) :Throw exception to sender; end endif :Deliver message to destination channel; :Return final message to the sender; note right Final message SHOULD contain the updated message ID if sent to a slave channel. end note stop @enduml]

Lifecycle of a message

Status objects processed in the same way.

 Media processing

Media processing

Choosing media formats

Both Master and Slave channel can take their charges
to convert media files they send or receive. In general:
if a media file received from remote server is not a
common format, convert it before deliver it on; if a
media file sent to remote server requires to be in a
specific format, it should be converted before sending
out. Nevertheless, this is only a guideline on
channels’ responsibility regarding media processing,
and everyone has their own opinion on what is a common
format / encoding. Therefore we only recommend this
behaviour, but do not force in our code. This is to
say that, you still have to take care of the accepted
type of media encoding of your corresponding method of
presentation, and convert and/or fallback to different
type of representation if necessary. After all, the
delivery of information is more important.

Media encoders

Similarly, we will also not put a strict limit on this
as well, but just a recommendation. As you might have
already know, there are few mature pure Python media
processing libraries, most of them will more or less
requires internal or external binary dependencies.

We try to aim to use as few different libraries as we
can, as more library to install means more space,
install time, and complexity. While processing media
files, we recommend to use the following libraries
if possible:

	Pillow [https://pillow.readthedocs.io/en/stable/]

	FFmpeg

Files in messages

When a file sent out from a channel, it MUST be open,
and sought back to 0 (file.seek(0)) before sending.

Files sent MUST be able to be located somewhere in
the file system, and SHOULD with a appropriate extension
name, but not required. All files MUST also have its
MIME type specified in the message object. If the channel
is not sure about the correct MIME type, it can try to
guess with libmagic, or fallback to application/octet-stream.
Always try the best to provide the most suitable MIME
type when sending.

For such files, we use close to signify the end of its
lifecycle. If the file is not required by the sender’s
channel anymore, it can be safely discarded.

Generally, tempfile.NamedTemporaryFile should work
for ordinary cases.

 Configurations and storage

Configurations and storage

Configurations and Permanent Storage

As described in Directories, each module has
been allocated with a folder per profile for configurations
and other storage. The path can be obtained using
get_data_path() with your
module ID. All such storage is specific to only one
profile.

For configurations, we recommend to use <module_data_path>/config.yaml.
Similarly, we prepared get_config_path()
to get the path for default config file. Again, you
are not forced to use this name or YAML as the
format of your config file.

Usually in the storage folder lives:

	Configuration files

	User credentials / Session storage

	Databases

Temporary Storage

While processing multimedia messages, we inevitably need
to store certain files temporarily, either within the channel
or across channels. Usually, temporary files can be handled
with Python’s tempfile library.

Wizard

If your module requires relatively complicated configuration,
it would be helpful to provide users with a wizard to
check prerequisites of your module and guide them to setup your module for use.

From version 2, EFB introduced a centralised wizard program
to allow users to enable or disable modules in a text-based user
interface (TUI). If you want to include your wizard program as a part
of the wizard, you can include a new entry point in your setup.py
with Setuptools’ Entry Point feature [https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins].

The group for wizard program is ehforwarderbot.wizard, and
the entry point function MUST accept 2 positional arguments:
profile ID and instance ID.

Example

setup.py script

setup(
 # ...
 entry_points={
 "ehforwarderbot.wizard": ['alice.irc = efb_irc_slave.wizard:main']
 },
 # ...
)

.egg-info/entry_points.txt

[ehforwarderbot.wizard]
alice.irc = efb_irc_slave.wizard:main

efb_irc_slave/wizard.py

...

def main(profile, instance):
 print("Welcome to the setup wizard of my channel.")
 print("You are setting up this channel in profile "
 "'{0}' and instance '{1}'.".format(profile, instance))
 print("Press ENTER/RETURN to continue.")
 input()

 step1()

 # ...

 Packaging and Publish

Packaging and Publish

Publish your module on PyPI

Publish modules on PyPI is one of the easiest way for
users to install your package. Please refer to related
documentation and tutorials about PyPI and pip for
publishing packages.

For EFB modules, the package is RECOMMENDED to have
a name starts with efb-, or in the format of
efb-platform-type, e.g. efb-irc-slave or
efb-wechat-mp-filter-middleware. If there is a
collision of name, you MAY adjust the package name
accordingly while keeping the package name starting
with efb-.

When you are ready, you may also want to add your module to
the Modules Repository [https://efb-modules.1a23.studio] of EFB.

Module discovery

EH Forwarder Bot uses Setuptools’ Entry Point feature [https://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins]
to discover and manage channels and middlewares. In your
setup.py script or .egg-info/entry_points.txt,
specify the group and object as follows:

	Group for master channels: ehforwarderbot.master

	Group for slave channels: ehforwarderbot.slave

	Group for middlewares: ehforwarderbot.middleware

Convention for object names is <author>.<platform>,
e.g. alice.irc. This MUST also be your module’s ID.

Object reference MUST point to your module’s class,
which is a subclass of either Channel or Middleware.

Example

setup.py script

setup(
 # ...
 entry_points={
 "ehforwarderbot.slave": ['alice.irc = efb_irc_slave:IRCChannel']
 },
 # ...
)

.egg-info/entry_points.txt

[ehforwarderbot.slave]
alice.irc = efb_irc_slave:IRCChannel

Private modules

If you want to extend from, or make changes on existing
modules for your own use, you can have your modules in
the private modules directory.

For such modules, your channel ID MUST be the fully-qualified
name of the class. For example, if your class is located
at <EFB_BASE_PATH>/modules/bob_irc_mod/__init__.py:IRCChannel,
the channel MUST have ID bob_ric_mod.IRCChannel for the
framework to recognise it.

 Miscellaneous

Miscellaneous

Logging

In complex modules, you should have detailed logs in
DEBUG level and optionally INFO level. All your log
handlers SHOULD follow that of the root logger, which
is controlled by the framework. This could be helpful
when for you to locate issues reported by users.

Vendor-specifics

If you are going to include vendor specific information
in messages and/or chats, please make your effort to
document them in your README or documentation, so that
other developers can refer to it when adapting your
module.

Threading

All channels are RECOMMENDED a separate thread while
processing a new message, so as to prevent unexpectedly
long thread blocking.

We are also considering to move completely to asynchronous
programming when most channels are ready for the change.

Static type checking

EH Forwarder Bot is fully labeled in the Python 3 type
hint notations. Since sometimes maintaining a module with
high complexity could be difficult, we RECOMMEND you to
type your module too and use tools like mypy [https://github.com/python/mypy] to check your
code statically.

 How to contribute

How to contribute

First of all, thanks for taking your time to contribute!

Please note that only questions on the framework will be
answered here. For issue related with any channels,
please contact their respective authors or post in their
corresponding repositories.

Here is a simple guide on how you can file in an issue,
or submit a pull request that is useful and effective.

If you need help, or want to talk to the authors, feel
free to visit our GitHub Discussions [https://github.com/ehForwarderBot/ehForwarderBot/discussions] forum, or chat with us at our
Telegram support group [https://telegram.me/efbsupport].

Before you ask a question, please read and follow this guide [http://www.catb.org/~esr/faqs/smart-questions.html]
as far as possible. Without doing so might lead to
unfriendly or no response from the community, although
we try to refrain from doing so.

Reporting bugs

Before submitting a bug report

	Please ensure if your issue is about the framework itself,
not about any module. Reports about modules should go
to their respective issue trackers.

	Read through the documentation to see if it has covered your question.

	Check the current issue list [https://efb.1a23.studio/issues] to see if it’s been reported.

How Do I Submit A (Good) Bug Report?

	Use a clear and descriptive title for the issue to identify the problem.

	Describe the exact steps which reproduce the problem in
as many details as possible.

	Provide specific examples to demonstrate the steps.

	Describe the behavior you observed after following the steps
and point out what exactly is the problem with that behavior.

	Explain which behavior you expected to see instead and why.

	If the problem wasn’t triggered by a specific action, describe
what you were doing before the problem happened and share more
information using the guidelines below.

	Provide log related to the issue. Use the verbose flag to
start the logging process, and submit the entire log from the
first step you performed.

Provide more context by answering these questions:

	Did the problem start happening recently (e.g. after updating
to the latest version) or was this always a problem?

	Can you reliably reproduce the issue? If not, provide details
about how often the problem happens and under which conditions
it normally happens.

Include details about your configuration and environment:

	What version of EFB are you using? You can get the
version by using the flag --version.

	What’s the name and version of the OS you’re using?

Attention

When submitting your log, please remember to hide your private
information.

Suggesting enhancements

If you have any suggestions, feel free to raise it up in the
issue list. Please try to provide as much details as you can,
that includes:

	Use a clear and descriptive title for the issue to identify the suggestion.

	Give details on how the enhancement behave.

	Provide specific examples to demonstrate the abstraction.

	The enhancement to the framework must be applicable to considerably many
IM platforms, not just for a single IM. Suggestions for a specific IM should
be made to their relative channel.

Adapted from Atom contribution guide [https://github.com/atom/atom/blob/master/CONTRIBUTING.md#reporting-bugs] by GitHub Inc.

Pull requests

When you have done some changes and want to submit it to us, fork
it to your account and submit a GitHub pull request.
Please write a detailed description for your pull request on:

	What changes have you made?

	What problem have you solved?

	Which issue have you addressed if applicable.

Always write a clear log message for your commits. One-line messages are
fine for small changes, but bigger changes needs a detailed description
after the one-liner.

Adapted from OpenGovernment contribution guide [https://github.com/opengovernment/opengovernment] by Participatory Politics Foundation

 API documentations

API documentations

This section contains documentations for the
current API of EH Forwarder Bot.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL
NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “NOT RECOMMENDED”,
“MAY”, and “OPTIONAL” in this document are to be interpreted as
described in BCP 14 [https://tools.ietf.org/html/bcp14] [RFC 2119 [https://tools.ietf.org/html/rfc2119.html]] [RFC 8174 [https://tools.ietf.org/html/rfc8174.html]] when, and only when, they
appear in all capitals, as shown here.

	Channel
	Common operations

	About Channel ID

	Chat and Chat Members

	Constants

	Coordinator

	Exceptions

	Message
	Examples

	Middleware
	About Middleware ID

	Accept commands from user through Master Channel

	Chat-specific interactions

	Status

	Custom Type Hints

	Utilities

 Channel

Channel

	
class ehforwarderbot.channel.Channel(instance_id=None)

	The abstract channel class.

	
channel_name

	A human-friendly name of the channel.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
channel_emoji

	Emoji icon of the channel. Recommended to use a
visually-length-one (i.e. a single grapheme cluster [http://unicode.org/reports/tr29/]) emoji or
other symbol that represents the channel best.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
channel_id

	Unique identifier of the channel.
Convention of IDs is specified in Packaging and Publish.
This ID will be appended with its instance ID when available.

	Type

	ModuleID (str)

	
instance_id

	The instance ID if available.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(instance_id=None)

	Initialize the channel.
Inherited initializer MUST call the “super init” method
at the beginning.

	Parameters

	instance_id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](InstanceID, str [https://docs.python.org/3/library/stdtypes.html#str])]) – Instance ID of the channel.

	
get_message_by_id(chat, msg_id)

	Get message entity by its ID.
Applicable to both master channels and slave channels.
Return None when message not found.

Override this method and raise
EFBOperationNotSupported
if it is not feasible to perform this for your platform.

	Parameters

	
	chat (Chat) – Chat in slave channel / middleware.

	msg_id (NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](MessageID, str [https://docs.python.org/3/library/stdtypes.html#str])) – ID of message from the chat in slave channel / middleware.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ForwardRef [https://docs.python.org/3/library/typing.html#typing.ForwardRef]]

	
abstract poll()

	Method to poll for messages. This method is called when
the framework is initialized. This method SHOULD be blocking.

	
abstract send_message(msg)

	Process a message that is sent to, or edited in this channel.

Notes

Master channel MUST take care of the returned object that contains
the updated message ID. Depends on the implementation of slave
channels, the message ID MAY change even after being edited. The old
message ID MAY be disregarded for the new one.

	Parameters

	msg (Message) – Message object to be processed.

	Returns

	The same message object. Message ID of the object MAY be
changed by the slave channel once sent. This can happen even
when the message sent is an edited message.

	Return type

	Message

	Raises

	
	EFBChatNotFound – Raised when a chat required is not found.

	EFBMessageTypeNotSupported – Raised when the message type sent is not supported by the
 channel.

	EFBOperationNotSupported – Raised when an message edit request is sent, but not
 supported by the channel.

	EFBMessageNotFound – Raised when an existing message indicated is not found.
 E.g.: The message to be edited, the message referred
 in the msg.target
 attribute.

	EFBMessageError – Raised when other error occurred while sending or editing the
 message.

	
abstract send_status(status)

	Process a status that is sent to this channel.

	Parameters

	status (Status) – the status object.

	Raises

	
	EFBChatNotFound – Raised when a chat required is not found.

	EFBMessageNotFound – Raised when an existing message indicated is not found.
 E.g.: The message to be removed.

	EFBOperationNotSupported – Raised when the channel does not support message removal.

	EFBMessageError – Raised when other error occurred while removing the message.

Note

Exceptions SHOULD NOT be raised from this method
by master channels as it would be hard for a slave channel
to process the exception.

This method is not applicable to Slave Channels.

	
stop_polling()

	When EFB framework is asked to stop gracefully,
this method is called to each channel object to
stop all processes in the channel, save all
status if necessary, and terminate polling.

When the channel is ready to stop, the polling
function MUST stop blocking. EFB framework will
quit completely when all polling threads end.

	
class ehforwarderbot.channel.MasterChannel(instance_id=None)

	The abstract master channel class. All master channels MUST inherit
this class.

	
class ehforwarderbot.channel.SlaveChannel(instance_id=None)

	The abstract slave channel class. All slave channels MUST inherit
this class.

	
supported_message_types

	Types of messages that the slave channel accepts as incoming messages.
Master channels may use this value to decide what type of messages
to send to your slave channel.

Leaving this empty may cause the master channel to refuse sending
anything to your slave channel.

	Type

	Set[MsgType]

	
suggested_reactions

	A list of suggested reactions to be applied to messages.

Reactions SHOULD be ordered in a meaningful way, e.g., the order
used by the IM platform, or frequency of usage. Note that it is
not necessary to list all suggested reactions if that is too long,
or not feasible.

Set to None when it is known that no reaction is supported to
ANY message in the channel. Set to empty list when it is not feasible
to provide a list of suggested reactions, for example, the list of
reactions is different for each chat or message.

	Type

	Optional[Sequence[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
abstract get_chat(chat_uid)

	Get the chat object from a slave channel.

	Parameters

	chat_uid (NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](ChatID, str [https://docs.python.org/3/library/stdtypes.html#str])) – ID of the chat.

	Returns

	The chat found.

	Return type

	Chat

	Raises

	EFBChatNotFound – Raised when a chat required is not found.

	
abstract get_chat_picture(chat)

	Get the profile picture of a chat. Profile picture is
also referred as profile photo, avatar, “head image”
sometimes.

	Parameters

	chat (Chat) – Chat to get picture from.

	Returns

	Opened temporary file object.
The file object MUST have appropriate extension name
that matches to the format of picture sent,
and seek to position 0.

It MAY be deleted or discarded once closed, if not needed otherwise.

	Return type

	BinaryIO

	Raises

	
	EFBChatNotFound – Raised when a chat required is not found.

	EFBOperationNotSupported – Raised when the chat does not offer a profile picture.

Examples

if chat.channel_uid != self.channel_uid:
 raise EFBChannelNotFound()
file = tempfile.NamedTemporaryFile(suffix=".png")
response = requests.post("https://api.example.com/get_profile_picture/png",
 data={"uid": chat.uid})
if response.status_code == 404:
 raise EFBChatNotFound()
file.write(response.content)
file.seek(0)
return file

	
abstract get_chats()

	Return a list of available chats in the channel.

	Returns

	a list of available chats in the channel.

	Return type

	Collection[Chat]

	
get_extra_functions()

	Get a list of additional features

	Return type

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](ExtraCommandName, str [https://docs.python.org/3/library/stdtypes.html#str]), Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]

	Returns

	A dict of methods marked as additional features.
Method can be called with get_extra_functions()["methodName"]().

Common operations

Sending messages and statuses

Sending messages and statuses to other channels is the most
common operation of a channel. When enough information is gathered
from external sources, the channel would then further process
and pack them into the relevant objects,
i.e. Message and Status.

When the object is built, the channel should sent it to the coordinator for
following steps.

For now, both Message and Status has an
attribute that indicates that where this object would be
delivered to (deliver_to and
destination_channel). This is used by
the coordinator when delivering the message.

Messages MUST be sent using coordinator.send_message().
Statuses MUST be sent using coordinator.send_status().

When the object is passed onto the coordinator, it will be
further processed by the middleware and then to its destination.

For example, to send a message to the master channel

def on_message(self, data: Dict[str, Any]):
 """Callback when a message is received by the slave channel from
 the IM platform.
 """
 # Prepare message content ...
 message = coordinator.send_message(Message(
 chat=chat,
 author=author,
 type=message_type,
 text=text,
 # more details ...
 uid=data['uid'],
 deliver_to=coordinator.master
))
 # Post-processing ...

About Channel ID

With the introduction of instance IDs, it is required to use the
self.channel_id or equivalent instead of any hard-coded
ID or constants while referring to the channel (e.g. while
retrieving the path to the configuration files, creating
chat and message objects, etc).

 Chat and Chat Members

Chat and Chat Members

Inheritance diagram

Inheritance diagram of ehforwarderbot.chat

Summary

	PrivateChat(*[, channel, middleware, …])

	A private chat, where usually only the User Themself and the other participant are in the chat.

	SystemChat(*[, channel, middleware, …])

	A system chat, where usually only the User Themself and the other participant (system chat member) are in the chat.

	GroupChat(*[, channel, middleware, …])

	A group chat, where there are usually multiple members present.

	ChatMember(chat, *[, name, alias, uid, id, …])

	Member of a chat.

	SelfChatMember(chat, *[, name, alias, id, …])

	The User Themself as member of a chat.

	SystemChatMember(chat, *[, name, alias, id, …])

	A system account/prompt as member of a chat.

	ChatNotificationState(value)

	Indicates the notifications settings of a chat in its slave channel or middleware.

Classes

	
class ehforwarderbot.chat.BaseChat(*, channel=None, middleware=None, module_name='', channel_emoji='', module_id='', name='', alias=None, uid='', id='', vendor_specific=None, description='')

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Base chat class, this is an abstract class sharing properties among all
chats and members. No instance can be created directly from this class.

Note

BaseChat objects are picklable, thus it is RECOMMENDED
to keep any object of its subclass also picklable.

	
module_id

	Unique ID of the module.

	Type

	ModuleID (str)

	
channel_emoji

	Emoji of the channel, empty string if the chat
is from a middleware.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
module_name

	Name of the module.

	Type

	ModuleID (str)

	
name

	Name of the chat.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
alias

	Alternative name of the chat, usually set by user.

	Type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
uid

	Unique ID of the chat. This MUST be unique within the channel.

	Type

	ChatID (str)

	
description

	A text description of the chat, usually known as “bio”,
“description”, “purpose”, or “topic” of the chat.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
vendor_specific

	Any vendor specific attributes.

	Type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
__init__(*, channel=None, middleware=None, module_name='', channel_emoji='', module_id='', name='', alias=None, uid='', id='', vendor_specific=None, description='')

	
	Parameters

	
	channel (Optional[SlaveChannel]) – Provide the channel object to fill module_name,
channel_emoji, and module_id automatically.

	middleware (Optional[Middleware]) – Provide the middleware object to fill module_name,
and module_id automatically.

	module_id (NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](ModuleID, str [https://docs.python.org/3/library/stdtypes.html#str])) – Unique ID of the module.

	channel_emoji (str [https://docs.python.org/3/library/stdtypes.html#str]) – Emoji of the channel, empty string if the chat
is from a middleware.

	module_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the module.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the chat.

	alias (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Alternative name of the chat, usually set by user.

	uid (NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](ChatID, str [https://docs.python.org/3/library/stdtypes.html#str])) – Unique ID of the chat. This MUST be unique within the channel.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A text description of the chat, usually known as “bio”,
“description”, “purpose”, or “topic” of the chat.

	vendor_specific (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – Any vendor specific attributes.

	
copy()

	Return a shallow copy of the object.

	Return type

	+_BaseChatSelf

	
property display_name: str

	Shortcut property, equivalent to alias or name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
property long_name: str

	Shortcut property, if alias exists, this will provide the alias with name
in parenthesis. Otherwise, this will return the name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
abstract verify()

	Verify the completeness of the data.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – When this chat is invalid.

	
class ehforwarderbot.chat.Chat(*, channel=None, middleware=None, module_name='', channel_emoji='', module_id='', name='', alias=None, id='', uid='', vendor_specific=None, description='', members=None, notification=<ChatNotificationState.ALL: -1>, with_self=True)

	Bases: ehforwarderbot.chat.BaseChat, abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

A chat object, indicates a user, a group, or a system chat. This class is
abstract. No instance can be created directly from this class.

If your IM platform is providing an ID of the User Themself, and it is using
this ID to indicate the author of a message, you SHOULD update
Chat.self.uid accordingly.

>>> channel.my_chat_id
"david_divad"
>>> chat = Chat(channel=channel, name="Alice", uid=ChatID("alice123"))
>>> chat.self.uid = channel.my_chat_id

By doing so, you can get the author in one step:

author = chat.get_member(author_id)

… instead of using a condition check:

if author_id == channel.my_chat_id:
 author = chat.self
else:
 author = chat.get_member(author_id)

Note

Chat objects are picklable, thus it is RECOMMENDED
to keep any object of its subclass also picklable.

	
module_id

	Unique ID of the module.

	Type

	ModuleID (str)

	
channel_emoji

	Emoji of the channel, empty string if the chat
is from a middleware.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
module_name

	Name of the module.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
name

	Name of the chat.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
alias

	Alternative name of the chat, usually set by user.

	Type

	Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]

	
uid

	Unique ID of the chat. This MUST be unique within the channel.

	Type

	ChatID (str)

	
description

	A text description of the chat, usually known as “bio”,
“description”, “purpose”, or “topic” of the chat.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
notification

	Indicate the notification settings of the chat in
its slave channel (or middleware), defaulted to ALL.

	Type

	ChatNotificationState

	
members

	Provide a list of members
in the chat. Defaulted to an empty list.

You can extend this object and implement a @property method
set for loading members on demand.

Note that this list may include members created by middlewares when the object is
a part of a message, and these members MAY not appear when trying to retrieve
from the slave channel directly. These members would have a different
module_id specified from the chat.

	Type

	list of ChatMember

	
vendor_specific

	Any vendor specific attributes.

	Type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
self

	the User as a member of the chat (if available).

	Type

	Optional[SelfChatMember]

	
__init__(*, channel=None, middleware=None, module_name='', channel_emoji='', module_id='', name='', alias=None, id='', uid='', vendor_specific=None, description='', members=None, notification=<ChatNotificationState.ALL: -1>, with_self=True)

	
	Keyword Arguments

	
	module_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique ID of the module.

	channel_emoji (str [https://docs.python.org/3/library/stdtypes.html#str]) – Emoji of the channel, empty string if the chat
is from a middleware.

	module_name – Name of the module.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the chat.

	alias (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Alternative name of the chat, usually set by user.

	id – Unique ID of the chat. This MUST be unique within the channel.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A text description of the chat, usually known as “bio”,
“description”, “purpose”, or “topic” of the chat.

	notification (ChatNotificationState) – Indicate the notification settings of the chat in
its slave channel (or middleware), defaulted to ALL.

	members (MutableSequence[ChatMember]) – Provide a list of members of the chat.
Defaulted to an empty list [https://docs.python.org/3/library/stdtypes.html#list].

	vendor_specific (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – Any vendor specific attributes.

	with_self (bool [https://docs.python.org/3/library/functions.html#bool]) – Initialize the chat with the User Themself as a member.

	
add_member(name, uid, alias=None, id='', vendor_specific=None, description='', middleware=None)

	Add a member to the chat.

Tip

This method does not check for duplicates. Only add members with this
method if you are sure that they are not added yet. To check if
the member is already added before adding, you can do something like
this:

with contextlib.suppress(KeyError):
 return chat.get_member(uid)
return chat.add_member(name, uid, alias=..., vendor_specific=...)

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the member.

	uid (NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](ChatID, str [https://docs.python.org/3/library/stdtypes.html#str])) – ID of the member.

	Keyword Arguments

	
	alias (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Alias of the member.

	vendor_specific (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – Any vendor specific attributes.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A text description of the chat, usually known as “bio”,
“description”, “purpose”, or “topic” of the chat.

	middleware (Optional[Middleware]) – Initialize this chat as a part
of a middleware.

	Return type

	ChatMember

	
add_self()

	Add self to the list of members.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – When there is already a self in the list of members.

	Return type

	SelfChatMember

	
add_system_member(name='', alias=None, id='', uid='', vendor_specific=None, description='', middleware=None)

	Add a system member to the chat.

Useful for slave channels and middlewares to create an author of a message from
a system member when the “system” member is intended to become a member of
the chat.

Tip

This method does not check for duplicates. Only add members with this
method if you are sure that they are not added yet.

	Keyword Arguments

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the member.

	uid – ID of the member.

	alias (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Alias of the member.

	vendor_specific (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – Any vendor specific attributes.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A text description of the chat, usually known as “bio”,
“description”, “purpose”, or “topic” of the chat.

	middleware (Optional[Middleware]) – Initialize this chat as a part
of a middleware.

	Return type

	SystemChatMember

	
get_member(member_id)

	Find a member of chat by its ID.

	Parameters

	member_id (NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](ChatID, str [https://docs.python.org/3/library/stdtypes.html#str])) – ID of the chat member.

	Return type

	ChatMember

	Returns

	the chat member.

	Raises

	KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] – when the ID provided is not found.

	
property has_self: bool

	Indicate if this chat has yourself.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
make_system_member(name='', alias=None, id='', uid='', vendor_specific=None, description='', middleware=None)

	Make a system member for this chat.

Useful for slave channels and middlewares to create an author of a message from
a system member when the “system” member is NOT intended to become a member of
the chat.

	Keyword Arguments

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the member.

	uid – ID of the member.

	alias (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Alias of the member.

	vendor_specific (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – Any vendor specific attributes.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A text description of the chat, usually known as “bio”,
“description”, “purpose”, or “topic” of the chat.

	middleware (Optional[Middleware]) – Initialize this chat as a part
of a middleware.

	Return type

	SystemChatMember

	
self: Optional[ehforwarderbot.chat.SelfChatMember]

	The user as a member of the chat (if available).

	
class ehforwarderbot.chat.ChatMember(chat, *, name='', alias=None, uid='', id='', vendor_specific=None, description='', middleware=None)

	Bases: ehforwarderbot.chat.BaseChat

Member of a chat. Usually indicates a member in a group, or the other
participant in a private chat. Chat bots created by the users of the
IM platform is also considered as a plain ChatMember.

To represent the User Themself, use SelfChatMember.

To represent a chat member that is a part of the system, the slave channel,
or a middleware, use SystemChatMember.

ChatMembers MUST be created with reference of the chat it
belongs to. Different objects MUST be created even when the same person
appears in different groups or in a private chat.

ChatMembers are RECOMMENDED to be created using
Chat.add_member() method.

Note

ChatMember objects are picklable, thus it is RECOMMENDED
to keep any object of its subclass also picklable.

	
__init__(chat, *, name='', alias=None, uid='', id='', vendor_specific=None, description='', middleware=None)

	
	Parameters

	chat (Chat) – Chat associated with this member.

	Keyword Arguments

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the member.

	alias (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Alternative name of the member, usually set by user.

	uid (ChatID (str)) – Unique ID of the member. This MUST be unique within the channel.
This ID can be the same with a private chat of the same person.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A text description of the member, usually known as “bio”,
“description”, “summary” or “introduction” of the member.

	middleware (Middleware) – Initialize this chat as a part
of a middleware.

	
verify()

	Verify the completeness of the data.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – When this chat is invalid.

	
class ehforwarderbot.chat.ChatNotificationState(value)

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

Indicates the notifications settings of a chat in its slave channel
or middleware. If an exact match is not available, choose the most similar one.

	
ALL = -1

	All messages in the chat triggers notifications.

	
MENTIONS = 1

	Notifications are sent only when the User is mentioned in the message,
in the form of @-references or quote-reply (message target).

	
NONE = 0

	No notification is sent to slave IM channel at all.

	
class ehforwarderbot.chat.GroupChat(*, channel=None, middleware=None, module_name='', channel_emoji='', module_id='', name='', alias=None, id='', uid='', vendor_specific=None, description='', notification=<ChatNotificationState.ALL: -1>, with_self=True)

	Bases: ehforwarderbot.chat.Chat

A group chat, where there are usually multiple members present.

Members can be added with the add_member() method.

If the with_self argument is True (which is the default setting),
the User Themself would also be initialized as a member of the chat.

Examples

>>> group = GroupChat(channel=slave_channel, name="Wonderland", uid=ChatID("wonderland001"))
>>> group.add_member(name="Alice", uid=ChatID("alice"))
ChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave channel>, name='Alice', alias=None, uid='alice', vendor_specific={}, description='')
>>> group.add_member(name="bob", alias="Bob James", uid=ChatID("bob"))
ChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave channel>, name='bob', alias='Bob James', uid='bob', vendor_specific={}, description='')
>>> from pprint import pprint
>>> pprint(group.members)
[SelfChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave channel>, name='You', alias=None, uid='__self__', vendor_specific={}, description=''),
 ChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave channel>, name='Alice', alias=None, uid='alice', vendor_specific={}, description=''),
 ChatMember(chat=<GroupChat: Wonderland (wonderland001) @ Example slave channel>, name='bob', alias='Bob James', uid='bob', vendor_specific={}, description='')]

Note

GroupChat objects are picklable, thus it is RECOMMENDED
to keep any object of its subclass also picklable.

	
verify()

	Verify the completeness of the data.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – When this chat is invalid.

	
class ehforwarderbot.chat.PrivateChat(*, channel=None, middleware=None, module_name='', channel_emoji='', module_id='', name='', alias=None, id='', uid='', vendor_specific=None, description='', notification=<ChatNotificationState.ALL: -1>, with_self=True, other_is_self=False)

	Bases: ehforwarderbot.chat.Chat

A private chat, where usually only the User Themself and the other
participant are in the chat. Chat bots SHOULD also be categorized under this
type.

There SHOULD only be at most one non-system member of the chat apart from
the User Themself, otherwise it might lead to unintended behavior.

This object is by default initialized with the other participant as its
member.

If the with_self argument is True (which is the default setting),
the User Themself would also be initialized as a member of the chat.

	Parameters

	other – the other participant of the chat as a member

Note

PrivateChat objects are picklable, thus it is RECOMMENDED
to keep any object of its subclass also picklable.

	
verify()

	Verify the completeness of the data.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – When this chat is invalid.

	
class ehforwarderbot.chat.SelfChatMember(chat, *, name='', alias=None, id='', uid='', vendor_specific=None, description='', middleware=None)

	Bases: ehforwarderbot.chat.ChatMember

The User Themself as member of a chat.

SelfChatMembers are RECOMMENDED to be created together with a
chat object by setting with_self value to True. The created object
is accessible at Chat.self.

The default ID of a SelfChatMember object is
SelfChatMember.SELF_ID, and the default name is a translated
version of the word “You”.

You are RECOMMENDED to change the ID of this object if provided by your IM
platform, and you MAY change the name or alias of this object depending on
your needs.

Note

SelfChatMember objects are picklable, thus it is RECOMMENDED
to keep any object of its subclass also picklable.

	
SELF_ID

	The default ID of a SelfChatMember.

	
__init__(chat, *, name='', alias=None, id='', uid='', vendor_specific=None, description='', middleware=None)

	
	Parameters

	chat (Chat) – Chat associated with this member.

	Keyword Arguments

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the member.

	alias (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Alternative name of the member, usually set by user.

	uid (ChatID (str)) – Unique ID of the member. This MUST be unique within the channel.
This ID can be the same with a private chat of the same person.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A text description of the member, usually known as “bio”,
“description”, “summary” or “introduction” of the member.

	middleware (Middleware) – Initialize this chat as a part
of a middleware.

	
class ehforwarderbot.chat.SystemChat(*, channel=None, middleware=None, module_name='', channel_emoji='', module_id='', name='', alias=None, id='', uid='', vendor_specific=None, description='', notification=<ChatNotificationState.ALL: -1>, with_self=True)

	Bases: ehforwarderbot.chat.Chat

A system chat, where usually only the User Themself and the other
participant (system chat member) are in the chat. This object is used to
represent system chat where the other participant is neither a user nor a
chat bot of the remote IM.

Middlewares are RECOMMENDED to create chats with this type when they want
to send messages in this type.

This object is by default initialized with the system participant as its
member.

If the with_self argument is True (which is the default setting),
the User Themself would also be initialized as a member of the chat.

	Parameters

	other – the other participant of the chat as a member

Note

SystemChat objects are picklable, thus it is RECOMMENDED
to keep any object of its subclass also picklable.

	
verify()

	Verify the completeness of the data.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – When this chat is invalid.

	
class ehforwarderbot.chat.SystemChatMember(chat, *, name='', alias=None, id='', uid='', vendor_specific=None, description='', middleware=None)

	Bases: ehforwarderbot.chat.ChatMember

A system account/prompt as member of a chat.

Use this chat to send messages that is not from any specific member.
Middlewares are RECOMMENDED to use this member type to communicate with
the User in an existing chat.

Chat bots created by the users of the IM platform SHOULD NOT be created
as a SystemChatMember, but a plain ChatMember instead.

SystemChatMembers are RECOMMENDED to be created using
Chat.add_system_member() or Chat.make_system_member() method.

Note

SystemChatMember objects are picklable, thus it is RECOMMENDED
to keep any object of its subclass also picklable.

	
SYSTEM_ID

	The default ID of a SystemChatMember.

	
__init__(chat, *, name='', alias=None, id='', uid='', vendor_specific=None, description='', middleware=None)

	
	Parameters

	chat (Chat) – Chat associated with this member.

	Keyword Arguments

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the member.

	alias (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – Alternative name of the member, usually set by user.

	uid (ChatID (str)) – Unique ID of the member. This MUST be unique within the channel.
This ID can be the same with a private chat of the same person.

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – A text description of the member, usually known as “bio”,
“description”, “summary” or “introduction” of the member.

	middleware (Middleware) – Initialize this chat as a part
of a middleware.

 Constants

Constants

	
class ehforwarderbot.constants.MsgType(value)

	An enumeration.

	
Animation = 'Animation'

	Message with an animation, usually in the form of GIF or
soundless video.

	
Audio = 'Voice'

	Audio messages (deprecated).

Deprecated since version Use: Voice if the message has a voice message (usually recorded).
Use File if the message has a music file (usually uploaded).

	
File = 'File'

	File message.

	
Image = 'Image'

	Image (picture) message.

Notes

Animated GIF images must use Animation type instead.

	
Link = 'Link'

	Message that is mainly one specific link, or a
text message with one link preview.

	
Location = 'Location'

	Location message.

	
Status = 'Status'

	Status from a user in a chat, usually typing and
uploading.

	
Sticker = 'Sticker'

	Pictures sent with few text caption, usually a
transparent background, and a limited number
of options that is usually not from the user’s
photo gallery.

	
Text = 'Text'

	Text message

	
Unsupported = 'Unsupported'

	Any type of message that is not listed above.
A text representation is required.

	
Video = 'Video'

	Video message

	
Voice = 'Voice'

	Voice messages, usually recorded right before sending.

 Coordinator

Coordinator

Coordinator among channels.

	
ehforwarderbot.coordinator.profile

	Name of current profile..

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
ehforwarderbot.coordinator.mutex

	Global interaction thread lock.

	Type

	threading.Lock [https://docs.python.org/3/library/threading.html#threading.Lock]

	
ehforwarderbot.coordinator.master

	The running master channel object.

	Type

	Channel

	
ehforwarderbot.coordinator.slaves

	Dictionary of running slave channel object.
Keys are the unique identifier of the channel.

	Type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], EFBChannel]

	
ehforwarderbot.coordinator.middlewares

	List of middlewares

	Type

	List[Middleware]

	
ehforwarderbot.coordinator.add_channel(channel)

	Register the channel with the coordinator.

	Parameters

	channel (Channel) – Channel to register

	
ehforwarderbot.coordinator.add_middleware(middleware)

	Register a middleware with the coordinator.

	Parameters

	middleware (Middleware) – Middleware to register

	
ehforwarderbot.coordinator.get_module_by_id(module_id)

	Return the module instance of a provided module ID

	Parameters

	module_id (NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](ModuleID, str [https://docs.python.org/3/library/stdtypes.html#str])) – Module ID, with instance ID if available.

	Return type

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Channel, Middleware]

	Returns

	Module instance requested.

	Raises

	NameError [https://docs.python.org/3/library/exceptions.html#NameError] – When the module is not found.

	
ehforwarderbot.coordinator.master: ehforwarderbot.channel.MasterChannel

	The instance of the master channel.

	
ehforwarderbot.coordinator.master_thread: Optional[threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]] = None

	The thread running poll() of the master channel.

	
ehforwarderbot.coordinator.middlewares: List[ehforwarderbot.middleware.Middleware] = []

	Instances of middlewares. Sorted in the order of execution.

	
ehforwarderbot.coordinator.mutex: _thread.allocate_lock = <unlocked _thread.lock object>

	Mutual exclusive lock for user interaction through CLI interface

	
ehforwarderbot.coordinator.profile: str [https://docs.python.org/3/library/stdtypes.html#str] = 'default'

	Current running profile name

	
ehforwarderbot.coordinator.send_message(msg)

	Deliver a new message or edited message to the destination channel.

	Parameters

	msg (Message) – The message

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ForwardRef [https://docs.python.org/3/library/typing.html#typing.ForwardRef]]

	Returns

	The message processed and delivered by the destination channel,
includes the updated message ID if sent to a slave channel.
Returns None if the message is not sent.

	
ehforwarderbot.coordinator.send_status(status)

	Deliver a status to the destination channel.

	Parameters

	status (Status) – The status

	
ehforwarderbot.coordinator.slave_threads: Dict[ModuleID, threading.Thread [https://docs.python.org/3/library/threading.html#threading.Thread]] = {}

	Threads running poll() from slave channels. Keys are the channel IDs.

	
ehforwarderbot.coordinator.slaves: Dict[ModuleID, ehforwarderbot.channel.SlaveChannel] = {}

	Instances of slave channels. Keys are the channel IDs.

	
ehforwarderbot.coordinator.translator: gettext.NullTranslations [https://docs.python.org/3/library/gettext.html#gettext.NullTranslations] = <gettext.NullTranslations object>

	Internal GNU gettext translator.

 Exceptions

Exceptions

	
exception ehforwarderbot.exceptions.EFBException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

A general class to indicate that the exception is from EFB framework.

	
exception ehforwarderbot.exceptions.EFBChatNotFound

	Bases: ehforwarderbot.exceptions.EFBException

Raised by a slave channel when a chat indicated is not found.

Can be raised by any method that involves a chat or a message.

	
exception ehforwarderbot.exceptions.EFBChannelNotFound

	Bases: ehforwarderbot.exceptions.EFBException

Raised by the coordinator when the message sent delivers to
a missing channel.

	
exception ehforwarderbot.exceptions.EFBMessageError

	Bases: ehforwarderbot.exceptions.EFBException

Raised by slave channel for any other error occurred when sending
a message or a status.

Can be raised in Channel.send_message() and Channel.send_status().

	
exception ehforwarderbot.exceptions.EFBMessageNotFound

	Bases: ehforwarderbot.exceptions.EFBMessageError

Raised by a slave channel when a message indicated is not found.

Can be raised in Channel.send_message() (edited message / target message not found)
and in Channel.send_status() (message to delete is not found).

	
exception ehforwarderbot.exceptions.EFBMessageTypeNotSupported

	Bases: ehforwarderbot.exceptions.EFBMessageError

Raised by a slave channel when the indicated message type is not supported.

Can be raised in Channel.send_message().

	
exception ehforwarderbot.exceptions.EFBOperationNotSupported

	Bases: ehforwarderbot.exceptions.EFBMessageError

Raised by slave channels when a chat operation is not supported.
E.g.: cannot edit message, cannot delete message.

Can be raised in Channel.send_message() and Channel.send_status().

	
exception ehforwarderbot.exceptions.EFBMessageReactionNotPossible

	Bases: ehforwarderbot.exceptions.EFBException

Raised by slave channel when a message reaction request from master channel is
not possible to be processed.

Can be raised in Channel.send_status().

 Message

Message

Summary

	Message(*[, attributes, chat, author, …])

	A message.

	LinkAttribute(title[, description, image, url])

	Attributes for link messages.

	LocationAttribute(latitude, longitude)

	Attributes for location messages.

	StatusAttribute(status_type[, timeout])

	Attributes for status messages.

	MessageCommands(commands)

	Message commands.

	MessageCommand(name, callable_name[, args, …])

	A message command.

	Substitutions(substitutions)

	Message text substitutions, or “@-references”.

Classes

	
class ehforwarderbot.message.Message(*, attributes=None, chat=None, author=None, commands=None, deliver_to=None, edit=False, edit_media=False, file=None, filename=None, is_system=False, mime=None, path=None, reactions=None, substitutions=None, target=None, text='', type=<MsgType.Unsupported: 'Unsupported'>, uid=None, vendor_specific=None)

	A message.

Note

Message objects are picklable, thus it is strongly RECOMMENDED
to keep any object of its subclass also picklable.

	Keyword Arguments

	
	attributes (Optional[MessageAttribute]) – Attributes used for a specific message type.
Only specific message type requires this attribute. Defaulted to
None.

	Link: LinkAttribute

	Location: LocationAttribute

	Status: Typing/Sending files/etc.: StatusAttribute

Note

Do NOT use object of the abstract class
MessageAttribute for
attributes, but object of specific class instead.

	chat (Chat) – Sender of the message.

	author (ChatMember) – Author of this message. Author of the message
MUST be indicated as a part of the same chat
this message is from. If the message is sent from the User Themself,
this MUST be an object of SelfChatMember.

Note that the author MAY not be inside members of the
chat of this message. The author MAY have a different
module_id from the chat, and
could be unretrievable otherwise.

	commands (Optional[MessageCommands]) – Commands attached to the message

This attribute will be ignored in _Status_ messages.

	deliver_to (Channel) – The channel that the message is to be delivered to.

	edit (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag this up if the message is edited.
Flag only this if no multimedia file is modified, otherwise flag up both
this one and edit_media as well.

If no media file is modified, the edited message MAY carry no information about
the file.

This attribute will be ignored in _Status_ messages.

	edit_media (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag this up if any file attached to the message is modified.
If this value is true, edit MUST also be True.
This attribute is ignored if the message type is not supposed to contain any
media file, e.g. Text, Location, etc.

This attribute will be ignored in _Status_ messages.

	file (Optional[BinaryIO]) – File object to multimedia file, type “rb”. None if N/A.
Recommended to use NamedTemporaryFile.
The file SHOULD be able to be safely deleted (or otherwise discarded)
once closed. All file object MUST be sought back to 0
(file.seek(0)) before sending.

	filename (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – File name of the multimedia file. None if N/A

	is_system (bool [https://docs.python.org/3/library/functions.html#bool]) – Mark as true if this message is a system message.

	mime (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – MIME type of the file. None if N/A

	path (Optional[Path]) – Local path of multimedia file. None if N/A

	reactions (Dict[str, Collection[Chat]]) – Indicate reactions to the message. Dictionary key is the canonical name
of reaction, usually an emoji. Value is a collection of users
who reacted to the message with that certain emoji.
All Chat objects in this dict MUST be members in the
chat of this message.

This attribute will be ignored in _Status_ messages.

	substitutions (Optional[Substitutions]) – Substitutions of messages, usually used when
the some parts of the text of the message
refers to another user or chat.

This attribute will be ignored in _Status_ messages.

	target (Optional[Message]) – Target message (usually for messages that “replies to”
another message).

This attribute will be ignored in _Status_ messages.

Note

This message MAY be a “minimum message”, with only required fields:

	Message.chat

	Message.author

	Message.text

	Message.type

	Message.uid

	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text of the message.

This attribute will be ignored in _Status_ messages.

	type (MsgType) – Type of message

	uid (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique ID of message.
Usually stores the message ID from slave channel.
This ID MUST be unique among all chats in the same channel.

Note

Some channels may not support message editing.
Some channels may issue a new uid for edited message.

	vendor_specific (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Any]) – A series of vendor specific attributes attached. This can be
used by any other channels or middlewares that is compatible
with such information. Note that no guarantee is provided
for information in this section.

	
property link: Optional[ehforwarderbot.message.LinkAttribute]

	Get the link attributes of the current message, if available.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LinkAttribute]

	
property location: Optional[ehforwarderbot.message.LocationAttribute]

	Get the location attributes of the current message, if available.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][LocationAttribute]

	
property status: Optional[ehforwarderbot.message.StatusAttribute]

	Get the status attributes of the current message, if available.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][StatusAttribute]

	
verify()

	Verify the validity of message.

	Raises

	AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError] – when the message is not valid

	
class ehforwarderbot.message.MessageAttribute

	Bases: abc.ABC [https://docs.python.org/3/library/abc.html#abc.ABC]

Abstract class of a message attribute.

	
class ehforwarderbot.message.LinkAttribute(title, description=None, image=None, url='')

	Bases: ehforwarderbot.message.MessageAttribute

Attributes for link messages.

	
title

	Title of the link.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
description

	Description of the link.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
image

	Image/thumbnail URL of the link.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], optional

	
url

	URL of the link.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(title, description=None, image=None, url='')

	
	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the link.

	description (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Description of the link.

	image (str [https://docs.python.org/3/library/stdtypes.html#str], optional) – Image/thumbnail URL of the link.

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – URL of the link.

	
class ehforwarderbot.message.LocationAttribute(latitude, longitude)

	Bases: ehforwarderbot.message.MessageAttribute

Attributes for location messages.

	
latitude

	Latitude of the location.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
longitude

	Longitude of the location.

	Type

	float [https://docs.python.org/3/library/functions.html#float]

	
__init__(latitude, longitude)

	
	Parameters

	
	latitude (float [https://docs.python.org/3/library/functions.html#float]) – Latitude of the location.

	longitude (float [https://docs.python.org/3/library/functions.html#float]) – Longitude of the location.

	
class ehforwarderbot.message.MessageCommand(name, callable_name, args=None, kwargs=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A message command.

This object records a way to call a method in the module object.
In case where the message has an author from a different
module from the chat, this function MUST be called on
the author’s module.

The method specified MUST return either a str as result or None
if this message will be edited or deleted for further interactions.

	
name

	Human-friendly name of the command.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
callable_name

	Callable name of the command.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
args

	Arguments passed to the function.

	Type

	Collection[Any]

	
kwargs

	Keyword arguments passed to the function.

	Type

	Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any]

	
__init__(name, callable_name, args=None, kwargs=None)

	
	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Human-friendly name of the command.

	callable_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Callable name of the command.

	args (Optional[Collection[Any]]) – Arguments passed to the function. Defaulted to empty list;

	kwargs (Optional[Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]) – Keyword arguments passed to the function.
Defaulted to empty dict.

	
class ehforwarderbot.message.MessageCommands(commands)

	Bases: List [https://docs.python.org/3/library/typing.html#typing.List][ehforwarderbot.message.MessageCommand]

Message commands.

Message commands allow user to take action to
a specific message, including vote, add friends, etc.

	
commands

	Commands for the message.

	Type

	list of MessageCommand

	
__init__(commands)

	
	Parameters

	commands (list of MessageCommand) – Commands for the message.

	
class ehforwarderbot.message.StatusAttribute(status_type, timeout=5000)

	Bases: ehforwarderbot.message.MessageAttribute

Attributes for status messages.

Message with type Status notifies the other end to update a chat-specific
status, such as typing, send files, etc.

	
status_type

	Type of status, possible values are defined in the
StatusAttribute.

	
timeout

	Number of milliseconds for this status to expire.
Default to 5 seconds.

	Type

	Optional[int [https://docs.python.org/3/library/functions.html#int]]

	
Types

	List of status types supported

	
class Types(value)

	Bases: enum.Enum [https://docs.python.org/3/library/enum.html#enum.Enum]

	
TYPING

	Used in status_type,
represent the status of typing.

	
UPLOADING_FILE

	Used in status_type,
represent the status of uploading file.

	
UPLOADING_IMAGE

	Used in status_type,
represent the status of uploading image.

	
UPLOADING_VOICE

	Used in status_type,
represent the status of uploading voice.

	
UPLOADING_VIDEO

	Used in status_type,
represent the status of uploading video.

	
__init__(status_type, timeout=5000)

	
	Parameters

	
	status_type (Types) – Type of status.

	timeout (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – Number of milliseconds for this status to expire.
Default to 5 seconds.

	
class ehforwarderbot.message.Substitutions(substitutions)

	Bases: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], Union [https://docs.python.org/3/library/typing.html#typing.Union][ehforwarderbot.chat.Chat, ehforwarderbot.chat.ChatMember]]

Message text substitutions, or “@-references”.

This is for the case when user “@-referred” a list of users in the message.
Substitutions here is a dict of correspondence between the index of
substring used to refer to a user/chat in the message and the chat object
it referred to.

Values of the dictionary MUST be either a member of the chat (self or
the other for private chats, group members for group chats) or another
chat of the slave channel.

A key in this dictionary is a tuple of two int [https://docs.python.org/3/library/functions.html#int]s, where first
of it is the starting position in the string, and the second is the
ending position defined similar to Python’s substring. A tuple of
(3, 15) corresponds to msg.text[3:15].
The value of the tuple (a, b) MUST satisfy \(0 ≤ a < b ≤ l\),
where \(l\) is the length of the message text.

	Type:
	Dict[Tuple[int, int], Chat]

	
property is_mentioned: bool

	Returns True if you are mentioned in this message.

In the case where a chat (private or group) is mentioned in this
message instead of a group member, you will also be considered
mentioned if you are a member of the chat.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

Examples

Prelude: Defining related chats

master: MasterChannel = coordinator.master
slave: SlaveChannel = coordinator.slave['demo.slave']
alice: PrivateChat = slave.get_chat("alice101")
bob: PrivateChat = slave.get_chat("bobrocks")
wonderland: GroupChat = slave.get_chat("thewonderlandgroup")
wonderland_alice: ChatMember = wonderland.get_member("alice101")

Initialization and marking chats

	A message delivered from slave channel to master channel

message = Message(
 deliver_to=master,
 chat=wonderland,
 author=wonderland_alice,
 # More attributes go here...
)

	A message delivered from master channel to slave channel

message = Message(
 deliver_to=slave,
 chat=alice,
 author=alice.self,
 # More attributes go here...
)

Quoting a previous message (targeted message)

Data of the quoted message SHOULD be retrieved from recorded historical data.
Message.deliver_to is not required for quoted message, and
complete data is not required here. For details, see Message.target.

You MAY use the Channel.get_message() method to get the message object
from the sending channel, but this might not always be possible depending on
the implementation of the channel.

message.target = Message(
 chat=alice,
 author=alice.other,
 text="Hello, world.",
 type=MsgType.Text,
 uid=MessageID("100000002")
)

Edit a previously sent message

Message ID MUST be the ID from the slave channel regardless of where the
message is delivered to.

message.edit = True
message.uid = MessageID("100000003")

Type-specific Information

	Text message

message.type = MsgType.Text
message.text = "Hello, Wonderland."

	Media message

Information related to media processing is described
in Media processing.

The example below is for image (picture) messages.
Audio, file, video, sticker works in the same way.

In non-text messages, the text attribute MAY be an empty string.

message.type = MsgType.Image
message.text = "Image caption"
message.file = NamedTemporaryFile(suffix=".png")
message.file.write(binary_data)
message.file.seek(0)
message.filename = "holiday photo.png"
message.mime = "image/png"

	Location message

In non-text messages, the text attribute MAY be an empty string.

message.type = MsgType.Location
message.text = "I'm here! Come and find me!"
message.attributes = LocationAttribute(51.4826, -0.0077)

	Link message

In non-text messages, the text attribute MAY be an empty string.

message.type = MsgType.Link
message.text = "Check it out!"
message.attributes = LinkAttribute(
 title="Example Domain",
 description="This domain is established to be used for illustrative examples in documents.",
 image="https://example.com/thumbnail.png",
 url="https://example.com"
)

	Status

In status messages, the text attribute is disregarded.

message.type = MsgType.Status
message.attributes = StatusAttribute(StatusAttribute.TYPING)

	Unsupported message

text attribute is required for this type of message.

message.type = MsgType.Unsupported
message.text = "Alice requested USD 10.00 from you. "
 "Please continue with your Bazinga App."

Additional information

	Substitution

@-reference the User Themself, another member in the same chat, and the
entire chat in the message text.

message.text = "Hey @david, @bob, and @all. Attention!"
message.substitutions = Substitutions({
 # text[4:10] == "@david", here David is the user.
 (4, 10): wonderland.self,
 # text[12:16] == "@bob", Bob is another member of the chat.
 (12, 16): wonderland.get_member("bob"),
 # text[22:26] == "@all", this calls the entire group chat, hence the
 # chat object is set as the following value instead.
 (22, 26): wonderland
})

	Commands

message.text = "Carol sent you a friend request."
message.commands = MessageCommands([
 EFBCommand(name="Accept", callable_name="accept_friend_request",
 kwargs={"username": "carol_jhonos", "hash": "2a9329bd93f"}),
 EFBCommand(name="Decline", callable_name="decline_friend_request",
 kwargs={"username": "carol_jhonos", "hash": "2a9329bd93f"})
])

 Middleware

Middleware

	
class ehforwarderbot.Middleware(instance_id=None)

	Middleware class.

	
middleware_id

	Unique ID of the middleware.
Convention of IDs is specified in Packaging and Publish.
This ID will be appended with its instance ID when available.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
middleware_name

	Human-readable name of the middleware.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
instance_id

	The instance ID if available.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
__init__(instance_id=None)

	Initialize the middleware.
Inherited initializer MUST call the “super init” method
at the beginning.

	Parameters

	instance_id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](InstanceID, str [https://docs.python.org/3/library/stdtypes.html#str])]) – Instance ID of the middleware.

	
get_extra_functions()

	Get a list of additional features

	Returns

	A dict of methods marked as additional features.
Method can be called with get_extra_functions()["methodName"]().

	Return type

	Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Callable]

	
process_message(message)

	Process a message with middleware

	Parameters

	message (Message) – Message object to process

	Returns

	Processed message or None if discarded.

	Return type

	Optional[Message]

	
process_status(status)

	Process a status update with middleware

	Parameters

	status (Status) – Message object to process

	Returns

	Processed status or None if discarded.

	Return type

	Optional[Status]

About Middleware ID

With the introduction of instance IDs, it is required to use the
self.middleware_id or equivalent instead of any hard-coded
ID or constants while referring to the middleware ID (e.g. while
retrieving the path to the configuration files, etc).

Accept commands from user through Master Channel

Despite we do not limit how the User interact with your
middleware, there are 2 common ways to do it through a
master channel.

Capture messages

If the action is chat-specific, you can capture messages with a
specific pattern. Try to make the pattern easy to type but unique
enough so that you don’t accidentally catch messages that were
meant to sent to the chat.

You may also construct a virtual chat or chat member of type “System”
to give responses to the User.

“Additional features”

If the action is not specific to any chat, but to the system
as a whole, we have provided the same command line-like interface
as in slave channels to middlewares as well. Details are available
at Additional features.

Chat-specific interactions

Middlewares can have chat-specific interactions through capturing messages
and reply to them with a chat member created by the middleware.

The following code is an example of a middleware that interact with the user
by capturing messages.

When the master channel sends a message with a text starts with time`,
the middleware captures this message and reply with the name of the chat
and current time on the server. The message captured is not delivered to
any following middlewares or the slave channel.

def process_message(self: Middleware, message: Message) -> Optional[Message]:
 if message.deliver_to != coordinator.master and \ # sent from master channel
 text.startswith('time`'):

 # Make a system chat object.
 # For difference between `make_system_member()` and `add_system_member()`,
 # see their descriptions above.
 author = message.chat.make_system_member(
 uid="__middleware_example_time_reporter__",
 name="Time reporter",
 middleware=self
)

 # Make a reply message
 reply = Message(
 uid=f"__middleware_example_{uuid.uuid4()}__",
 text=f"Greetings from chat {message.chat.name} on {datetime.now().strftime('%c')}.",
 chat=chat,
 author=author, # Using the new chat we created before
 type=MsgType.Text,
 target=message, # Quoting the incoming message
 deliver_to=coordinator.master # message is to be delivered to master
)
 # Send the message back to master channel
 coordinator.send_message(reply)

 # Capture the message to prevent it from being delivered to following middlewares
 # and the slave channel.
 return None

 # Continue to deliver messages not matching the pattern above.
 return message

 Status

Status

	
class ehforwarderbot.status.Status

	Abstract class of a status

	
destination_channel

	The
channel that this status is sent to, usually
the master channel.

	Type

	Channel

	
class ehforwarderbot.status.ChatUpdates(channel, new_chats=(), removed_chats=(), modified_chats=())

	Inform the master channel on updates of slave chats.

	
channel

	Slave channel that issues the update

	Type

	SlaveChannel

	
new_chats

	Unique ID of new chats

	Type

	Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
removed_chats

	Unique ID of removed chats

	Type

	Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
modified_chats

	Unique ID of modified chats

	Type

	Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
__init__(channel, new_chats=(), removed_chats=(), modified_chats=())

	
	Parameters

	
	channel (SlaveChannel) – Slave channel that issues the update

	new_chats (Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Unique ID of new chats

	removed_chats (Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Unique ID of removed chats

	modified_chats (Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Unique ID of modified chats

	
class ehforwarderbot.status.MemberUpdates(channel, chat_id, new_members=(), removed_members=(), modified_members=())

	Inform the master channel on updates of members in a slave chat.

	
channel

	Slave channel that issues the update

	Type

	SlaveChannel

	
chat_id

	Unique ID of the chat.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
new_members

	Unique ID of new members

	Type

	Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
removed_members

	Unique ID of removed members

	Type

	Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
modified_members

	Unique ID of modified members

	Type

	Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]

	
__init__(channel, chat_id, new_members=(), removed_members=(), modified_members=())

	
	Parameters

	
	channel (SlaveChannel) – Slave channel that issues the update

	chat_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – Unique ID of the chat.

	new_members (Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Unique ID of new members

	removed_members (Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Unique ID of removed members

	modified_members (Optional[Collection[str [https://docs.python.org/3/library/stdtypes.html#str]]]) – Unique ID of modified members

	
class ehforwarderbot.status.MessageReactionsUpdate(chat, msg_id, reactions)

	Update reacts of a message, issued from slave channel to master channel.

	Parameters

	
	chat (Chat) – The chat where message is sent

	msg_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the message for the reacts

	reactions (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](ReactionName, str [https://docs.python.org/3/library/stdtypes.html#str]), Collection [https://docs.python.org/3/library/typing.html#typing.Collection][ChatMember]]) – Indicate reactions to the message. Dictionary key represents the
reaction name, usually an emoji. Value is a collection of users
who reacted to the message with that certain emoji.
All Chat objects in this dict MUST be members in the chat
of the message.

	destination_channel (MasterChannel) – Channel the status is issued to, which is always the master channel.

	
__init__(chat, msg_id, reactions)

	
	Parameters

	
	chat (Chat) – The chat where message is sent

	msg_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of the message for the reacts

	reactions (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][NewType() [https://docs.python.org/3/library/typing.html#typing.NewType](ReactionName, str [https://docs.python.org/3/library/stdtypes.html#str]), Collection [https://docs.python.org/3/library/typing.html#typing.Collection][ChatMember]]) – Indicate reactions to the message. Dictionary key represents the
reaction name, usually an emoji. Value is a collection of users
who reacted to the message with that certain emoji.
All Chat objects in this dict MUST be members in the chat
of the message.

	
class ehforwarderbot.status.MessageRemoval(source_channel, destination_channel, message)

	Inform a channel to remove a certain message.

This is usually known as “delete from everyone”, “delete from recipient”,
“recall a message”, “unsend”, or “revoke a message” as well, depends on
the IM platform.

Some channels MAY not support removal of messages, and raises a
exceptions.EFBOperationNotSupported exception.

Feedback by sending another MessageRemoval back is not required
when this object is sent from a master channel. Master channels SHOULD
treat a successful delivery of this status as a successful removal.

	
source_channel

	Channel issued the status

	Type

	Channel

	
destination_channel

	Channel the status is issued to

	Type

	Channel

	
message

	Message to remove.
This MAY not be a complete message.Message object.

	Type

	Message

	Raises

	exceptions.EFBOperationNotSupported – When message removal is not supported in the channel.

	
__init__(source_channel, destination_channel, message)

	Create a message removal status

Try to provided as much as you can, if not, provide a minimum information
in the channel:

	Slave channel ID and chat ID (message.chat.module_id
and message.chat.uid)

	Message unique ID from the slave channel (message.uid)

	Parameters

	
	source_channel (Channel) – Channel issued the status

	destination_channel (Channel) – Channel the status is issued to

	message (Message) – Message to remove.

	
class ehforwarderbot.status.ReactToMessage(chat, msg_id, reaction)

	Created when user react to a message, issued from master channel.

When this status is sent, a status.MessageReactionsUpdate is
RECOMMENDED to be issued back to master channel.

	Parameters

	
	chat (Chat)